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Highly accurate observations at various scales on the land surface are urgently needed for the studies of many areas, such as 
hydrology, meteorology, and agriculture. With the rapid development of remote sensing techniques, remote sensing has had 
the capacity of monitoring many factors of the Earth’s land surface. Especially, the space-borne microwave remote sensing 
systems have been widely used in the quantitative monitoring of global snow, soil moisture, and vegetation parameters with 
their all-weather, all-time observation capabilities and their sensitivities to the characteristics of land surface factors. Based on 
the electromagnetic theories and microwave radiative transfer equations, researchers have achieved great successes in the mi-
crowave remote sensing studies for different sensors in recent years. This article has systematically reviewed the progresses on 
five research areas including microwave theoretical modeling, microwave inversion on soil moisture, snow, vegetation and 
land surface temperatures. Through the further enrichment of remote sensing datasets and the development of remote sensing 
theories and inversion techniques, remote sensing including microwave remote sensing will play a more important role in the 
studies and applications of the Earth systems. 
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Land surface parameters, such as snow, soil moisture, and 
vegetation, are important parameters of hydrology model, 
climate and land surface processes. It is difficult to monitor 
these parameters efficiently at large-scale, using traditional 
methods. In contrast to the traditional methods, remote 
sensing expands the limited information retrieved from  

conventional “point” measurements into the “surface” in-
formation and makes it possible to achieve quantitative 
analysis on the these parameters. Moreover, remote sensing 
provides concrete data basis and supports for quantitative 
analyses on land-atmosphere interactions and climate models.  

Space-borne sensors are classified into three categories: 
visible, infra-red, and microwave sensors. Optical sensors 
are subjected to the influences of atmosphere and cloud  



 Shi J C, et al.   Sci China Earth Sci   July (2012) Vol.55 No.7 1053 

whereas the microwave sensors have the all-weather, all- 
climate monitoring capacity. Besides the good penetration 
capacity, observations from microwave sensors are also 
very sensitive to water in variant forms, such as soil mois-
ture, vegetation water content, and snow. With the launches 
of microwave sensors during the past years, microwave 
remote sensing has had the capacity of monitoring land sur-
face at a global scale. Among these sensors, those designed 
for monitoring hydrology cycle and energy cycle are: (1) 
microwave radiometers with moderate or low spatial resolu-
tions, including SMMR, SSM/I, TRMM, AMSR-E, and 
FY3/MWRI.These sensors have been used for the inver-
sions of soil moisture and snow parameters; (2) microwave 
scatterometers with moderate or low spatial resolutions, 
such as ERS-1/2; (3) Space-borne SAR with high-spatial 
resolutions. These include TerraSAR-X,ALOS/PALSAR, 
RADARSAT-2, COSMO-SkyMed, and the scheduled HJ- 
1C SAR. (4) The scheduled L-band missions, such as the 
NASA SMAP mission. 

Great efforts have been made in using the observations 
from these sensors. This paper will give a systematical in-
troduction and review on the microwave modeling theory 
and inversion methods. 

1  Theoretical modeling of microwave remote 
sensing 

An accurate understanding and description of the micro-
wave emission and scattering mechanisms of random rough 
surfaces, vegetation, and snow layer is the most important 
theoretical foundation, and provides the essential tools for 
the interpretation and explanation of satellite observations, 
simulation of satellite data, assimilation of satellite data, 
development of quantitative inversion algorithms of terrain 
parameters, as well as design of new sensors. We should 
thus strengthen the research on the theoretical modeling of 
microwave remote sensing. In the section we shall review 
the state-of-the-art of theoretical modeling of rough surface, 
snow, and vegetation for microwave remote sensing.  

1.1  Modeling of scattering from random rough surfaces 

The analysis of electromagnetic scattering from random 
rough surfaces has been one of the research hotspots in mi-
crowave remote sensing. The traditional models are the 
Kirchhoff Approximation (KA), which is applicable to sur-
faces with small curvatures or high frequency incidence, 
and the small perturbation method (SPM), which is applica-
ble for slightly rough surfaces or extremely low frequencies. 
In order to bridge the gap between SPM and KA, several 
so-called unifying methods have been developed, including 
the phase perturbation technique (PPT) [1], the full wave 
approach (FWA) [2], the small slope approximation (SSA) 
[3], the integral equation method (IEM) [4], the operator 

expansion method (OEM) [5], and so on.  
The ability to provide good predictions for scattering co-

efficients in certain applications and the convenience to use 
has made IEM a very popular model for the analysis of 
electromagnetic scattering from terrain surfaces. Its major 
assumptions are as follows: the removal of the spatial de-
pendence of the local angle of incidence of the Fresnel re-
flection coefficient by replacing it with either the angle of 
incidence or the specular angle. For the cross-polarization, 
the reflection coefficient used to compute the Kirchhoff 
fields is approximated by one half of the difference between 
transverse parallel and vertical reflection coefficients; edge 
diffraction terms are excluded; and the complementary field 
coefficients are approximated by simplifying the surface 
Green’s function and its gradient in the phase terms. These 
assumptions have compromised the model prediction accu-
racy, in particular for bistatic scattering, where notable dis-
crepancy has been found between model results and meas-
urements [6].  

Concerns over the assumptions have prompted several 
modifications of IEM. Hsieh et al. [7] proposed the im-
proved IEM model (I-IEM) where the absolute term in the 
exponent of the spectral representation of the Green’s func-
tion was retained. As such, the complementary field coeffi-
cient Fqp contains both upward and downward travelling 
fields. Yet treatment of single scattering was kept identical 
to that of IEM, with modifications applied only to multiple 
scattering. Alvarez-Perez [8] proposed the so-called Integral 
Equation Model for Second-Order Multiple Scattering 
(IEM2M), where in addition to the retaining of the absolute 
term in the exponent of the spectral representation of the 
Green’s function, the corresponding ±terms appearing in the 
gradient of Green’s function was also kept. A decomposi-
tion of Fqp was made based on the Green’s functions and 
their gradients in the subspaces above and below the rough 
surface. The two partial derivative components of the sur-
face normal, obtained by the method of integration by parts, 
were also differentiated according to the Weyl spectral rep-
resentation of the Green’s functions in the subspaces above 
and below the rough surface. This treatment elicited differ-
ent opinion from Fung et al. [9], for it was thought to cause 
oscillation when the medium below the surface was absorp-
tive. Similar treatment was reported in the Advanced   
Integral Equation Model (AIEM) proposed by Chen et al. 
[10, 11], with a different treatment of the two partial deriva-
tive components of the surface normal, which was only 
based on the Weyl spectral representation of the Green’s 
functions in the subspace above the rough surface. A transit 
function was used to modify the Fresnel reflection coeffi-
cient.  

These modified models have demonstrated improved 
performance over IEM, in particular for bistatic scattering 
applications. However, there are still rooms for further im-
provement. First, the evaluation of the incoherent power of 
the complementary field is not sufficiently accurate. Second, 
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with the modification of the integration ranges due to the 
absolute term in the exponent, an error function should be 
resulted yet not reflected in the above models. Third, 
whether the two partial derivative components of the sur-
face normal, when derived by the method of integration by 
parts, should be treated in the same way for media both 
above and below the surface, and if the answer is yes, then 
how to deal with the corresponding oscillation issue? Such 
analysis is still awaiting answers.  

The Extended Advanced Integral Equation Model, 
(EAIEM) [12] can be regarded as an extension to both 
AIEM and IEM2M [13]. The extension contains two as-
pects: first in the evaluation of the complementary scatter-
ing coefficient for single scattering, it has made fewer, and 
less restrictive, assumptions; second, it has carried out a 
more rigorous analysis by the inclusion of the error function 
related terms for the cross- and complementary scattering 
coefficients, which can be regarded as correcting terms. The 
first aspect implies that the model for the complementary 
scattering coefficient is more accurate and more general, 
even when the effect of the error function related terms is 
neglected. The second aspect suggests that for the case 
where both the media above and below the rough surface 
are lossless, this correcting term vanishes for the cross- 
scattering coefficient, but not for the complementary scat-
tering coefficient. Numerical results have demonstrated 
improved performance. An illustration is provided in Figure 
1. However, there are cases where none of the above models 
can show good results, and further development of more 
advanced model is called for. 

1.2  Modeling of scattering from snow 

The modeling of scattering from snow needs to consider the 
impact of the microstructure of ice particles and their elec-
tromagnetic coupling, resulting in a rather complicated 
phase function. One typical theory is the Dense Media Ra- 

 

 

Figure 1  EAIEM Model shows precise theoretical predication for bistatic 
scattering coefficient. 

diative Transfer (DMRT) by Tsang et al. [13], where the 
coherent wave is treated using the Quasi-Crystalline Ap-
proximation (QCA), whereas the incoherent power by lad-
der approximation [14, 15]. The relative positions of ice 
particles are described by the Percus-Yevick pair distribu-
tion function [16]. This model can be used for active and 
passive microwave remote sensing with multiple-scattering 
effects. When combined with other methods, such as the 
Numerical Maxwell Model of Three-Dimensional Simula-
tions (NMM3D), the theory was found to be in good 
agreement with measurement data [17].  

Since the snow particles are treated as discrete ones in 
DMRT, the snow layer can be regarded as a discrete ran-
dom medium. The alternative is to treat it as a continuous 
random medium, where the permittivity is a random varia-
ble described by its mean and spatial correlation function. 
Inclusion of the singularity of the dyadic Green’s function 
leads to the strong fluctuation theory (SFT) [18].  

Yet both upper and lower interfaces of the snow layer 
were assumed to be planar in DMRT with the effect of sur-
face roughness in both surface scattering and surface-  
volume interaction ignored. The surfaces are rough by na-
ture. To improve the modeling by including the effect of 
surface roughness, we proposed the DMRT-AIEM-MD 
microwave radiative model which is suitable for rough in-
terfaces (Figure 2), and developed a parameterized mul-
tifrequency radiative model [19, 20], where propagation of 
the electromagnetic wave in the snow layer is described by 
DMRT, the contribution from the upper and lower surfaces 
is computed using AIEM, and the Matrix Doubling (MD) 
method for the analysis of multiple scattering within the 
layer [20]. Combining this model with the 0th order radia-
tive transfer equation, we obtained a parameterized model. 
It has demonstrated an accuracy comparable with theoreti-
cal models and an efficient similar to that of the 0th order 
solution. In an analogous manner, we have developed a 
snow scattering theoretical model and parameterized model, 
which take into account vertical layers of the snow and 
multiscattering effect [21]. It has been demonstrated that the 
model agrees well with the measurement data and therefore 
can be used in an inversion algorithm for snow parameters 
as well as fast simulation of radar signals.  

In addition, there are also other models such as the HUT 
model and MEMLS model that are simplified empirical 
snow radiative models. The HUT [22] model is based on the 
solution to scalar radiative transfer equation, with its scat-
tering phase function simplified to contain only the forward 
direction (i.e., one Dirac delta function), whereas the ex-
tinction coefficient as a function of the snow diameter is 
obtained empirically [23]. MEMLS model [24] is a multi- 
layer radiative transfer model for snow, suitable for 5–100 
GHz frequency range. It is based on an approximate solu-
tion to the RTE, including the total reflection, coherent and 
incoherent reflections from the interfaces, whereas the snow 
scattering coefficient as a function of snow density  
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Figure 2  Comparison between snow’s emissivity computed by DMRT-AIEM-MD model and measured. 

and correlation length is obtained empirically [25], and the 
absorption coefficient, the effective dielectric constant and 
the reflection coefficients at interfaces are obtained through 
physical models and measured ice dielectric constant.  

As the latest development in snow scattering models, 
Ding et al. proposed one model based on bicontinuous ran-
dom microstructure with discrete permittivities [26], where 
the microstructure was simulated using the level-cut realiza-
tion of Gaussian random field by Berk, which showed a 
great degree of similarity between simulated medium and 
realistic microstructure of snow [27]. The DDA was then 
used to calculate the scattered field, and the coherent and 
incoherent terms were separated after many realizations, 
where the incoherent wave was used for the computation of 
the phase function and scattering coefficient needed by RTE. 
This procedure gave a simulation of coupled active-passive 
microwave remote sensing. Because the snow geometrical 
structure was irregular in the Bicontinuous model, which 
was also similar to real structure to a large degree, the 
cross-polarized signal due to the irregular structure was ac-
counted for and its prediction was thus improved. 

1.3  Modeling of scattering from vegetation canopies 

To model the scattering from vegetation canopies requires a 
good understanding of the involved complex electromag-
netic interactions. Many models have been proposed in the 
literature. In the early models, a vegetation canopy was 
usually described as a continuous random medium with 
varying dielectric constant, and its scattering coefficient was 
obtained in terms of the variation and correlation function 
of the random dielectric constant. The calculation was rela-
tively simple, yet the lack of direct correspondence between 
the parameters of the models and the physical parameters of 
vegetation canopies limit their usefulness.  

The discrete random media models based on the physical 
parameters of the vegetation canopy have been proposed in 
the literature, where the canopy is treated as composed of 
discrete scatterers, whose scattering features are obtained 
through the averaging over the distribution of size, orienta-
tion, and dielectric constant of the scatterers. Typical mod-
els include the distorted born approximation (DBA) for sin-
gle layer canopy by Lang et al. [28], and the Michigan Mi-

crowave Canopy Scattering Model (MIMICS) based on the 
Radiative Transfer Equation (RTE) by Ulaby et al. [29] In 
MIMICS, the vegetation layer consists of canopy, trunk and 
ground layers. The final outcome is the first order solution 
of the RTE. It has the following advantages: 1) in the analy-
sis of ground scattering and the interaction between the 
vegetation and the ground, the effect of surface roughness 
has been included; 2) multiplicity of size and orientation of 
branches has been considered; 3) it is a fully polarized 
model. Karam et al. [30] proposed some refinement to the 
model, where second-order scattering within the vegetation 
layer was considered under the framework of RTE. The 
interference effect has been ignored in the above models. 
Sun and Ranson [31] proposed a three-dimensional radar 
backscatter model of forest canopies, where the effect of 
three-dimensional forest structure was considered. Ni et al. 
[32] further incorporated the matrix-doubling method into 
the model, which showed improved performance for cross- 
polarization.   

Given the shortcomings of the incoherent models as 
listed above, the coherent model is increasingly taking a 
leading role. In general, the coherence of a vegetation can-
opy that needs to be considered in a coherent scattering 
model contains two parts: one is due to the constituents 
within a single plant, and the other due to inter-plant inter-
action. In a model that does not consider near field, the co-
herence is determined mainly by the relative positions of the 
scatterers. Each constituent is usually modeled using a ca-
nonical geometric form; for instance, for a single soybean 
canopy, the stem or a branch can be approximated by a die-
lectric cylinder of finite length, and a leaf by a thin dielec-
tric disk. It has certain orientation distribution. The accuracy 
of a coherent vegetation canopy scattering model depends 
on several factors: 1) the accuracy of the analysis of scat-
tering from the constituents, that is, from dielectric cylin-
ders of finite length and from thin dielectric cylinders; 2) 
the accuracy of the analysis of scattering from random 
rough surfaces; 3) the degree of fidelity of representing the 
realistic scene; 4) the degree of importance of near field 
couplings among constituents; and 5) the accuracy of rep-
resenting ground truth, such as the orientation distribution 
of a leaf.   

As a dielectric cylinder of finite length is usually used to 
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approximate the constituent of many types of vegetation, it 
is important to accurately calculate its electromagnetic scat-
tering. Different approximate methods are normally called 
for in the calculation depending on the shape, size of the 
cylinder and the wavelength. When the dimension of the 
cylinder is much smaller than the wavelength, the Rayleigh 
Approximation [28], Rayleigh-Gans Approximation, or 
Generalized Rayleigh-Gans Approximation (GRGA) can be 
used. GRGA is applicable to the case where the dimension 
of the cylinder is comparable to the wavelength, yet it is 
required that at least one dimension is much smaller than 
the wavelength. Stiles and Sarabandi [33] proposed a more 
general solution for dielectric cylinders of arbitrary cross 
section, yet the size of the cross section was required to be 
much less than the wavelength. When the length is much 
larger than the diameter of the cross section, the method of 
Infinite Cylinder Approximation (ICA) [34] can be used, 
where the internal field is approximated by that of infinite 
length. The GRGA and ICA methods have been widely 
used in the study of vegetation scattering. Yet caution must 
be made of their respective restrictions and the fact that the 
reciprocity theorem is satisfied by none of them.  

For more general cases, Waterman [35] proposed a semi- 
analytical method called Tmatrix approach, which is based 
on the extended boundary condition method (EBCM). It has 
become one of the most widely used tools for rigorous  
solution of volume electromagnetic scattering based on 
Maxwell’s equations, and has been applied to particles of 
various shapes, such as spheroids, finite cylinders, Cheby-
shev particles, cubes, and clusters of spheres [36–39]. In 
applying extended boundary condition to calculate the T 
matrix that relates the exciting field and scattered field, one 
assumes that the exciting field is inside the inscribing 
sphere and the scattered field outside the circumscribing 
sphere, respectively. However, for particles with extreme 
geometries such as very large aspect ratios, regular EBCM 
is found to suffer from convergence problems [40]. Physi-
cally, this ill-conditioning procedure is due to the fact that 
for cases of extreme geometries, the exciting fields will not 
accurately represent surface currents. Nor will the scattered 
fields. 

For spheroids with a large aspect ratio, one approach for 
overcoming the problem of numerical instability in compu-
ting the T matrix is the so-called iterative extended bound-
ary condition method (IEBCM) [41]. Its main feature is the 
representation of the internal field by several subregion 
spherical function expansions centered along the major axis 
of the prolate spheroid. The contiguous subregional expan-
sions are related by matching in the overlapping zones. The 
point-matching method (PMM) can be used to determine 
the set of unknown expanded coefficients of internal field. 
In some spheroidal cases, the use of IEBCM instead of the 
regular EBCM is reported to allow more than quadruple the 
maximum convergent size parameter. 

However, since this procedure approximates the highly 

lossy dielectric object with a perfectly conducting object of 
the same shape as its initial solution, it is restricted by the 
conductivities of the dielectric particles and the maximum 
convergent size parameter of EBCM for such perfectly 
conducting object. Moreover, as pointed out by Kahnert 
[42], PMM is less flexible for different particle shapes be-
cause, the more the particle’s geometry departs from sphe-
ricity, the more unsuitable the expansions of the fields in 
spherical vector wave functions. Thus, elongated particles 
require the use of specially adapted PMM implementations 
with a longer computation time and higher computer-code 
complexity. Another similar technique is the general multi-
pole technique (GMT) [43], which represents electromag-
netic field vectors by multiple spherical expansions about 
several expansion origins, which are located at appropriate 
positions in the interior region. Although the GMT has been 
successfully used for particles with smooth surfaces, such as 
hemispherically or spherically capped cylinders, there are 
issues when it is used in the scattering computations of fi-
nite cylinders with flat ends reported. Recently, null field 
method with discrete sources (NF-DS) was proposed to deal 
with the instability of conventional EBCM [44]. Its numer-
ical stability is achieved at the expense of considerable in-
crease in computer complexity, and the resolution of this 
method can be affected by the localization of the sources. 

For a cylinder with a large aspect ratio, the conventional 
EBCM suffers from divergence issue in the computation of 
the T-matrix, which is reflected in the instability of the so-
lution. To this end, the so-called extended T-matrix method 
has shown to offer a good solution [45, 46].  

The analysis of electromagnetic scattering from thin die-
lectric disk is mainly through the GRGA. Yet in this method 
the disk dimension is required to be much larger than the 
wavelength. Yet at L or C band, the representative dimen-
sion of the leaves of many types of vegetation is comparable 
to the wavelength (the resonant region), which brings forth 
a large degree of uncertainty in the suitability of the GRGA. 
Koh and Sarabandi [47] proposed a method that can be used 
over a wide range of disk dimensions in the calculating of 
the forward scattering amplitude function. Yet in this 
method, a key integral contains the product of two Bessel 
functions with distinct arguments, which may cause numeri- 
cal instability for bistatic scattering. There is the need for 
further study in the analysis of electromagnetic scattering 
from dielectric disks.  

As vegetation is treated as a discrete random medium, 
the electromagnetic coupling among main stalks, branches, 
and leaves may contribute to the overall scattering for the 
vegetation canopy. Its importance depends on, among other 
things, the type of vegetation and the wavelength. In the 
analysis of scattering from soybean canopy, Chiu and Sara-
bandi [48] proposed a simplified second order near field 
scattering to approximate electromagnetic coupling. They 
concluded that such near field is important at C band but not 
at L band. Yet a detailed analysis would reveal that the se-



 Shi J C, et al.   Sci China Earth Sci   July (2012) Vol.55 No.7 1057 

cond order near field scattering has limited contribution to 
the overall scattered field even at C band. To be specific, at 
C band, although such near field scattering is significant for 
fully grown soybeans, for not fully grown soybeans, the 
same data show that the contribution from rough surface is 
about 10 dB higher for the horizontally-polarized backscat-
ter up to 50°. Similar observations apply to the vertical po-
larization as well. Moreover, when computing scattering 
from the underneath rough surface, the roughness parame-
ters used corresponded to a rather smooth surface, with the 
rms height and correlation length much smaller than the 
ground truth used in ref. [49], which seems to agree well 
with that in refs. [50, 51]. This suggests that the backscatter 
from the rough surface might be much stronger than that of 
ref. [49] had the common ground truth been used. In other 
words, the second order near field scattering is insignificant 
for not fully grown soybeans even at C band. On the con-
trary, the contribution from the underneath rough surface is 
higher, and may play a leading role in the overall scattered 
field in many cases.   

The relative positions of vegetation plants may have a 
non-negligible effect on the overall scattering. The conven-
tional branch model used hole correction, an first order sta-
tistical model, to describe the inter-plant topology. In ref. 
[52], the more complicated Percus-Yevick pair distribution 
function, originated from a statistical description of gas 
molecules distribution, was adopted to describe the inter 
plant distribution. In typical agricultural practice certain 
plants such as corn seem to form semi-regular rows and 
columns, or spatial semi-periodicity. Such semi-periodicity 
may be treated in a way similar to antenna array theory, 
with the modification that in setting up a two dimensional 
ground with periodically regular grids, one plant occupies a 
grid yet at random position within the grid. The random 
deviation of the plant from the center of the grid is assumed 
to follow a Gaussian distribution. Another important feature 
of a vegetation canopy is its anisotropicity at microwave 
frequencies, where the attenuation and change of propaga-
tion speed of the electromagnetic wave depends on polari-
zation. The extinction coefficient and albedo for the hori-
zontal polarization are different from that of the vertical 
polarization [53, 54]. Therefore a study of the anisotropicity 
is of theoretical and practical value.   

The theoretical models are the foundations of microwave 
sensing and inversion of terrain parameters. In the following 
we shall provide a detailed survey of the inversion algo-
rithms of major terrain parameters in microwave remote 
sensing. Specifically, we shall elaborate on inversion algo-
rithms in passive as well as active remote sensing based on 
the distinct observation characteristics of microwave sensors.   

2  Microwave remote sensing of snow 

Seasonal snow is one of key parameters in water-energy 

balance prediction with the change of global system. It also 
influences the regional climate and hydrology, and acts as 
water resource for the mid-latitude areas. Therefore, it is 
very important to monitor snow cover’s temporal and spa-
tial variation. 

2.1  Passive microwave remote sensing snow water 
equivalence retrieval 

The microwave radiation from snow cover mainly includes 
two sections: one is the radiation form the snow itself, and 
the other is from the underlying surface. Snow’s radiation 
changes with the volume of snow cover (snow depth), the 
structure of snow and the content of liquid water [55]. Both 
theory and experiments demonstrate that the brightness 
temperature decreases with the increasing snow depth   
[56]. In addition, snow grain size and liquid water content 
also strongly influence the brightness temperature of snow 
cover.  

In low-frequency scope, the emission from dry snow 
cover is affected mainly by the properties of the underlying 
surface. On the other hand, the high-frequency emission is 
sensitive to the snow water equivalence and snow grain  
size, due to the scattering of the snow particles. [57, 58]. 
When snow starts melting, the emission from snow is en-
hanced obviously. That is because of the different dielectric 
constants of ice and water, while the main signals come 
from the snow surface [59]. Dry snow is strong scatter in 
high-frequency, but it absorbs little. Thus the scatter plays 
the dominate role in the extinction of snow in the high-  
frequency [60], which significantly decreases the direct ra-
diation. So we can use this property to discover the exist-
ence of snow cover and retrieve the snow depth. 

The study of monitoring snow using passive microwave 
remote sensing has been held for a long time in North 
America and Europe, and many researches about the 
physically based snow passive microwave remote sensing 
and algorithms have been taken, including theoretical 
models [20, 61, 62], ground-based measurements [63, 64], 
airborne experiments [65–67] and spaceborne experiments 
[68–73]. 

Since the 1990s, scientists in China combined the Chi-
nese meteorological stations snow depth data with bright-
ness temperature from SSM/I and AMSR-E, and developed 
several retrieval algorithms suited for Chinese area [74–76]. 
The main snow depth retrieval algorithms include semi- 
emprical, iterative and neural network algorithms and data 
assimilation methods. The signal received by the radiometer 
contains the emission from the atmosphere, snow pack, un-
derlying surface, and the influences from vegetation. Due to 
these complex effects, it is difficult to develop some effec-
tive physically-based algorithms. The main algorithms to 
retrieve snow water equivalence are as follows.  
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2.1.1  Static snow water equivalence retrieval algorithm 

Static snow water equivalence retrieval algorithm is one of 
most widely used algorithms over the world. These algo-
rithms assume a linear relationship between the snow depth 
(or snow water equivalence) and the brightness temperature 
gradient. Researchers developed the empirical and semi- 
empirical methods to estimate snow depth and snow water 
equivalence. Based on the different data used during the 
algorithm development, researchers establish different line-
ar empirical parameters a and b, where ∆TB is the bright-
ness temperature difference of different frequencies and 
polarizations, which usually used the frequency 19 and 37 
GHz at vertical or horizontal polarizations.  

The accuracy of estimating the snow depth (SWE) is 
greatly complicated due to the presence of vegetation under 
which the radiation from the snowpack is weakened, while 
the signal received is increased because of the emission 
from the canopy. In order to improve the accurate estima-
tion, Foster et al. [77] and Chang et al. [71] employed forest 
fraction cover to correct the algorithm under forest covered 
area. Foster algorithm [77] offered an improved method for 
the forest-cover area, and reduced the error from 50% to 
15% in the SWE retrieval of North America. It ignored the 
difference at different areas, such as forest physical temper-
ature, the type of forest, the density of the canopy, suppos-
ing the forest has the same contribution both in 18 and 37 
GHz horizontal polarization brightness temperature. How-
ever, some problems still exist that when the canopy is  
thick, the microwave cannot penetrate it and the forest plays 
the dominate part of the radiation feature. Therefore, the 
signal from the snowpack under the canopy is less accord-
ingly the error increases. Based on this feature, Forster et al. 
[77] employed two temporal dynamic parameters to repre-
sent effect of the forest cover percentage and snow grain 
size respectively, emphasizing the importance of prior 
knowledge such as snow classes and land-cover-type data-
bases. Thus he established a new SWE retrieval algorithm. 
In addition, Derksen et al. [78] broadened the SWE retrieval 
in the boreal forest/tundra region in northern Canada.    

Apart from the frequencies of 19 and 37 GHz, brightness 
temperature of other frequencies and land surface parame-
ters are also employed in the static SWE algorithms. Be-
cause the microwave in 10.7 GHz can penetrate deeper 
snow than that in 18.7 GHz, Derksen [79] use the ground 
data from 2004 to 2007 to regress the relationship between 
the brightness temperature difference in different frequen-
cies and SWE in the study of deep snow beneath the boreal 
forest of northern Canada. This study indicated that the deep 
snow with an obvious deep hoar layer also scattered and 
brightness temperature decreased with the increasing snow 
depth. In addition, to improve the poor retrieval results in 
Canadian tundra area, Derksen et al. [80] used the winter 
data from 2002 to 2006 to establish a new method only de-
pended on the brightness temperature of 37 GHz in a verti-
cal polarization.  

In the study of retrieval algorithm in Chinese area, Cao et 
al. [81, 82] classified the southwestern China into five 
topographic units (plateau, higher mountain, lower moun-
tain, hill, basin), then used optical snow data to validate the 
snow depth derived from SSMR data. Che and Li [83] im-
proved snow depth algorithms with the Chinese weather 
station data. Sun et al. [84] and Chang [85] employed snow 
cover and MODIS IGBP land cover, referring the linear 
spectral unmixing method, using the Chinese meteorologi-
cal station observed snow depth and AMSR-E brightness 
temperature data, to establish a snow depth empirical re-
trieval algorithm. On the study of their work, Wang [86] 
replaced MODIS IGBP land cover with the Chinese land. 

2.1.2  Dynamic algorithm 

Kelly et al. [87] developed a dynamic algorithm to estimate 
snow depth. The process of snow grain size and snow den-
sity is described with semi-empirical model changing with 
time. According to the relationship between the brightness 
temperature simulated by Dense Media Radiative Transfer 
Model (DMRT) and the snow depth, setting the snow tem-
perature can return a quadratic polynomial regression equa-
tion. When the snow depth ranges from 50 to 100 cm, there 
is saturation points in 37 GHz, so Kelly set up the threshold 
to make sure the retrieval results is within the scope of the 
DMRT. The validation from global WTO-GTS station of 
1992–1995 and 2000–2001 indicated its limited revision to 
Chang algorithm. Although the error is nearer to zero, its 
effect is no more significant than Foster algorithm [77].     

Jobsberger and Mognard [88] developed the TGI (tem-
perature gradient index) dynamic algorithm to interpret the 
temporal and spatial variation of the snow inner properties, 
especially the variation of snow grain size. Through the 
ground-based measurements in the Great Plains in the 
United States they found that the brightness temperature 
was still increasing after the snow depth reached the maxi-
mum and became decreased, which was contradict to prin-
ciples of static algorithm. They thought it may be caused by 
the variation of the snow grain diameter. In certain stations, 
there is a linear relationship between SG and TGI, so the 
snow depth is easily derived. Although the TGI algorithm 
described the physical process in the snow variation, several 
problems remained: 1) this method is only adapted for the 
snowpack in Alaska, Siberia, and Canada and is valid only 
if Tground is below Tair. 2) The algorithm depends on dif-
ferential equation as a function of time; therefore, when 
applied in daily retrieval, smoothing of time and Tair is  
required. 3) If the change in brightness temperature dSG/dt 
is the denominator, snow depth become abnormal when the 
dSG/dt is not significant. 4) This algorithm poorly predicts 
when the melting begins or when earlier snowfall melts 
after hitting the ground. 5) Due to the different snow varia-
tion processes in each year, the coefficient α is unstable 
with the annual change.    

Based on the snow grain variation feature in the snow- 
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season, Grippa combined these static and dynamic algo-
rithms discussed above to estimate the SWE [89]. This 
method predicts monthly snow depth relatively more accu-
rate, but cannot be used in some areas such as boreal forest. 

2.1.3  Iteration algorithm 

One of well-developed iteration algorithms is The Helsinki 
University of Technology (HUT) model [73]. HUT as a 
forward iteration model is semi-empirical, given the influ-
ences from forest cover and atmosphere. Its basic hypothe-
sis is that the radiation from snow is forward concentrated, 
accounting for 0.96. The snow is depicted as a single ho-
mogeneous layer. Snow extinction coefficient, forest cano-
py extinction, soil surface roughness, and the atmosphere 
effects are expressed by a semi-empirical equation. Roy et 
al. [90] used extinction equation for large particles, revising 
the algorithm on the basis of Rayleigh scatter. Pullianinen 
employed a least-squares method with constraint conditions 
with the HUT model to yield the SWE [73]. The brightness 
temperature derived from HUT model is in accord with the 
data observed by the SSM/I sensor. Hence the accuracy of 
HUT model is better than that of traditional static algo-
rithms. The RMSE in regional SWE retrieval for dry snow 
is about 30 mm. However, this algorithm has a disadvantage 
that some atmosphere and canopy parameters as well as the 
soil surface roughness are yielded through the semi-    
empirical, and thus these parameters have a great regional 
difference. As a result, the relative error varies from year to 
year, and the minimal RMSE is around 20 mm.  

2.1.4  Physically-based algorithm 

Jiang et al. [20] adopted the matrix doubling approach to 
calculate the snowpack vector radiative transfer equation. 
This model uses DMRT model on the basis of Mie scatter to 
interpret the extinction and emission in the snow layer, and 
then uses AIEM to establish the boundary conditions of 
surface emission and vector radiation transfer model. Owing 
to the complex equation of Matrix Doubling approach in 
considering the multiple scattering, the answer to it cannot 
be used in retrieval. Hence, Jiang et al. [91] analyze the 
multiple scattering-considered model and compare it to the 
zeroth-order model, developing a parameterized model that 
includes multiple scattering. This model is adapted for the 
condition that the optical thickness τ below 2. Based on the 
parameterized model, Jiang et al. [91] developed the mod-
el-based SWE retrieval algorithm.       

On the basis of establishing an emission simulation da-
tabase containing more snow parameters as possible, Jiang 
et al. [91] used the thought discussed above to obtain the 
snowpack emission (A) and attenuation properties (B), and 
then according to the simulated data, found the good regres-
sion relationship between these two parameters, which 
means the SWE can be calculated through it. 
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where a, b, c, d is the regression coefficient established by 
the data base. Note that A, B is only affected by the snow 
properties. Suppose the snow particle is sphere-shaped and 
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This algorithm uses simulated data to validate. Figure 3 
is the comparison between SWE derived from simulated 
data and the input (as the true value). The RMSE is 32.8 
mm, indicating that the model can be used directly to re-
trieve the SWE. 

This algorithm assumed that the surface temperature and 
snow temperature are known. Firstly, use the relationship 
between different frequencies and polarizations to remove 
the effects caused by the surface in the whole observed sig-
nals. Then extract the signals from the snowpack to retrieve 
the SWE. Jiang et al. [91] used the radiation stimulated da-
tabase and airborne data from the Cold Land Processes 
Field Experiment (CLPX, 2003) in Colorado to test this 
method, and the accuracy in SWE estimation reaches    
30 mm. Comparing this results and that from the basic algo-
rithm used by AMSR-E to ground measurements, they 
found that both methods overestimated the SWE. However, 
the new physically-based statistic algorithm is more accu-
rate than the AMSR-E one. But this algorithm can only 
perform in vegetated sparse area. It needs to be further work 
in dense vegetated regions.  

2.1.5  Neural network algorithms 

At first scientists use the Backus-Gilbert techniques to solve 
remote sensing problems. They use single-scattering ap-
proximation to conveniently describe the linear relationship 
between scatter measurements and the medium parameters. 
But in the problems about microwave remote sensing, espe- 

 

 

Figure 3  Comparison between snow water equivalence data simulated 
and retrieved.  
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cially the dry snow, multiple scattering play an important 
role, and there is a nonlinear relationships between meas-
urements and medium. At present, the neural network tech-
nique is used in multiple-parameter retrieval. Davis et al. 
[92] trained the snow signal simulated by DMRT model 
including multiple scattering and extracted snow parameters, 
where they use five measurements to yield four parameters 
(mean snow grain size, snow density, snow temperature and 
snow depth). Because of the presence of problems, this 
technique has some difficulties with a wide application, 
especially the limits of the trained data.   

2.1.6  Data Assimilation methods 

Liston et al. [93] and Rodell et al. [94] used the earliest data 
assimilation methods, which update snow depth with a di-
rect-insertion, that is, replacing the model simulation with 
the direct observations, directly substituting the simulated 
results in a coupled land-atmosphere simulation, so as to 
improve the simulation of SWE. In some conditions it can 
improve the simulation, but sometimes the streamflow does 
not predict correctly [95]. Sun et al. [96] applied the ex-
tended Kalman filter to assimilation based on the watershed 
land surface model, which remained on the pre-research of 
the snow assimilation methods [97].  

Andreadis and Lettenmaier [98] applied an ensemble 
Kalman filter to couple the remote sensing snow monitoring 
to the Variable Infiltration Capacity (VIC) model. They 
utilized the MODIS snow pack product from 1999 to 2003 
to update the SWE simulated by the VIC, retrieving the 
SWE and snow cover resort to a simple snow melting  
model. The results indicate that mean absolute differences 
in snow coverage of 0.106 and 0.128 for assimilating 
MODIS snowpacks or not, respectively. Andreadis and 
Lettenmaier assimilated the AMSR-E SWE product, but 
because it does not work in the deep snow. Thus, the accu-
racy will decrease if applying the remotely sensed SWE 
when the snow is deep. 

Durand and Margulis [99] assimilate the SSM/I and 
AMSR-E brightness temperature and broadband albedo to 
the Simple Snow-Atmosphere-Soil (SAST) model put 
which is inside the Simplified Simple Biosphere, testing the 
feasibility in SWE estimation and improving the estimation 
accuracy. They also found, among the whole microwave 
band of SSM/I and AMESR-E, the 10.65 GHz band can 
provide the most of SWE information. 

Based on HUT model, Pulliainen [100] applied the as-
similation microwave brightness temperature observing 
approach and the Bayesian technique, adding different 
weights to each snow depth from the satellite observation 
and ground-based measurements and improving the retriev-
al accuracy with the assimilation technique. At present, this 
approach is used in North America snow depth and SWE 
retrieval algorithms, established by Finland Meteorological 
Institute in Europe. In addition, Che [101] combined the 
MEMLS model with the snow cover module in CLM to 

study the indirect snow parameter assimilation. Because of 
the difference of the direct assimilation data and satel-
lite-based retrieval data, the ultimate results will be affected. 
The indirect assimilation with the resort to radiation transfer 
model and snow cover physical process model can assimi-
late the brightness temperature observed by the satellite. 
Thus it can efficiently reduce the error brought by the satel-
lite observation during the snow physical process.   

In summary, currently the common passive microwave 
snow depth (SWE) retrieval algorithm is the semi-empirical 
linear algorithm. This sort of algorithm can estimate accu-
rate snow depth in specific areas, while there are still un-
certain factors when applied in the global application. And 
other techniques such as neural networks, iteration, Bayesi-
an retrieval algorithms are difficult to be carried out in the 
whole world. We suggest to establish a physically-based 
theoretical retrieve model, which could estimate snow depth 
and snow water equivalence. And it will help us to under-
stand snow microwave emission character in the aspect of 
physical scheme. 

2.2  Snow parameters retrieval by active microwave 
remote sensing 

Compared with passive microwave sensors, unique infor-
mation related to polarization, intensity and phase signa-
tures are provided within the active microwave sensors, 
especially the Synthetic Aperture Radar (SAR). By using 
these additional information, the active microwave remote 
sensing has advantages in high resolution snow mapping 
and snow parameters retrieval. 

2.2.1  Snow mapping with SAR 

Visible and near-infrared sensors have been used intensive-
ly for snow mapping, but they are limited by weather condi-
tion and cloud, and thus it is very essential to study the 
method of snow mapping by active microwave sensors. 
Three different methods are usually used for snow mapping 
by SAR, as described below. 

(1) Snow mapping with single-polarization multi-  
temporal data.  Only one intensity measurement per pixel 
is available with single-polarization data, and thus we only 
rely on the radiometric property to distinguish snow covered 
area from other targets. Because of the unique dieletric 
property of wet snow at microwave band, the backscattering 
coefficient of wet snow area is usually lower than other tar-
gets such as bare soil and dry snow area. By using this 
property, multi-temporal data acquired with snow-free (or 
dry snow) and wet snow condition can be used for wet snow 
mapping [102]. The imaging geometry of multi-temporal 
data is similar, and thus this reduced the terrain effect on the 
algorithm. For wet snow mapping in forest regions, the first 
step is to compensate forest canopy effect on observed 
backscattering coefficient. This is done by a semi-empirical 
forest backscattering model and forest stem volume infor-
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mation [97]. Then the fraction of wet snow covered area is 
calculated with the estimated ground surface backscattering 
coefficient and two reference images: one with fully wet 
snow cover and the other with snow-free condition [103, 
104]. 

(2) Snow mapping with multi-polarization and mul-
ti-frequency observations.  Shi and Dozier [105] evaluated 
the characteristics of the backscattering coefficient, polari-
zation, and frequency ratio of the targets in the study site 
near the Mammoth Mountain. They developed two types of 
supervised classifiers based on classification tree technique. 
The first type of the classifier was developed by using in-
tensity measurements, polarization properties, and frequen-
cy ratios. It can map dry snow and discriminate dry from 
wet snow, but it requires topographic information for radio- 
metric terrain correction and to reduce effects of local inci-
dence angle. It is about 79% as accurate as a TM binary 
classification, but it suffers some shortcomings; for example, 
it underestimates the total snow cover in regions of mixed 
pixels, especially forested regions. Its performance on the 
two data-takes where the snow was dry showed that only a 
few pixels were misclassified as wet snow. The second type 
of classifier was developed based on polarization properties 
and backscattering ratios between different frequencies. 
Since these measurements can be obtained correctly without 
radiometric terrain calibration, the classifier does not require 
topographic information and can be used to map wet snow. 
Shi et al. [106] also developed a method with multi-    
polarization C-band airborne SAR to map wet snow and 
glacier ice without a DEM, using only measurements of the 
polarization properties. Its accuracy is 77% when compared 
with TM binary classification. 

(3) Snow mapping with repeat-pass Interferometric tech-
nique.  In the study of using SIR-C/X-SAR data to map 
snow cover [105], it was found that wet snow cover had 
very similar backscattering intensity and polarization char-
acteristics to smooth bare surface at C-band and X-band. In 
a large drainage basin or at the regional scale, where many 
different targets are within a scene, those intensity based 
techniques might not be reliable. For similar reasons, 
change detection measurement might be also unreliable 
since the similar change in backscattering could be caused 
by different natural environment changes. Thus, other tech-
niques should be developed for large-scale snow mapping. 

Repeat-pass data provides additional measurement other 
than the intensity, the coherence measurement between two 
repeat-passes is a useful measurement in addition to 
backscattering intensities in each scene and their changes 
between two passes, and makes it possible to develop an 
algorithm for mapping both dry and wet snow covers over 
large area. Strozzi et al. [107] demonstrated that coherence 
measurements could provide the separation between wet 
snow cover and bare ground. The low coherence observed 
over wet snow cover is caused mainly by the rapid change 
in scattering properties and geometry as a result of wet 

snow metamorphism due to the movement of free liquid 
water content, ice grain growth, displacements of adjacent 
scatterers, and formation of density heterogeneities (layer-
ing, ice-lenses, etc.), which all result in a significant decor-
relation. On the other hand, the high coherence is regularly 
observed over no-forested snow free areas. For forested 
areas, it can be easily separated with wet snow cover due to 
their significant difference in backscattering intensity even 
if its coherence is generally low. These are the physical ba-
sis for wet snow mapping. For using C-band measurements, 
however, it requires the short temporal scale (a few days) 
between the two repeat-pass measurements in order to avoid 
the significant temporal decorrelation in other surface tar-
gets such as bare or short vegetation surfaces. 

Shi et al. [108] evaluated the L-band coherence meas-
urements between two repeat-pass SIR-C image data from 
its first mission in April (with snow) and second mission in 
October (without snow), 1994. They showed that the co-
herence measurements between one snow covered scene 
and one without snow provide a very good separation be-
tween snow cover and bare surface as well as short vegeta-
tion. A pixel-based decision tree classifier was developed 
based on analysis on coherence and intensity. The coher-
ence and intensity information were both used in the classi-
fication tree. Comparison showed that 86% accuracy was 
achieved for snow cover area under consideration of the TM 
classification map as the ground truth.  

Venkataraman et al. [109] used the full polarization 
ALOS PALSAR data for snow mapping. This method was 
based on H-A- polarization decomposition technique and 
the feature that the “Polarization Fraction” index is higher 
in snow covered areas than other areas. The third eigen  
value of H-A- decomposition was also used for the map-
ping algorithm. Comparing with the results of H-A- 
Wishart supervised classification and Yamaguchi decompo-
sition Wishart supervised classification showed that this 
method can produce fairly good snow mapping result and 
does not need any topographic information [109]. Longepe 
et al. [110] also used the full polarization PALSAR data for 
snow mapping. The Support Vector Machine (SVM) tech-
nique combined with H-A- decomposition, or Freeman de-
composition or the three polarized backscattering intensity 
were used for mapping of snow-free area, wet snow area and 
“dry snow & frozen soil area”. The result comparisons indi-
cated that SVM technique combined with Freeman decompo-
sition quantities produced the best result [110]. 

2.2.2  Snow parameters retrieval with SAR 

(1) Snow wetness inversion.  Shi and Dozier [111] de-
veloped an algorithm for snow wetness retrieval using 
C-band polarimetric SAR imagery. This algorithm is de-
veloped using a database, which covers the most possible 
wet snow physical properties including the wide ranges of 
snow wetness, density, particle size and surface roughness, 
simulated by the first-order scattering model with both sur-
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face and volume scattering components. The major devel-
opments in this algorithm were: 1) a simplified surface 
backscattering model, that describes the relationships be-
tween the different polarization measurements for the con-
ditions of most seasonal wet snow covers, to minimize the 
surface roughness effects with multi-polarization measure-
ments; 2) the property of the volume scattering ratio in 
co-polarizations, which is only a function of snow permit-
tivity and incidence angle to minimize the volume scattering 
albedo effects on estimation of snow wetness. This algo-
rithm requires no information about the volume scattering 
albedo or the surface roughness parameter. With known 
local incidence angle, it involves only the calculation of 
snowpack permittivity, which can be directly related to 
snow wetness. This algorithm is applicable to the situations 
of incidence angle from 25° to 70°, and the snow surface 
roughness –– rms height <0.7 cm and correlation length <25 
cm. The comparison between ground measured snow wet-
ness and snow wetness derived from SIR-C and AIRSAR 
using this algorithm showed that the algorithm performed 
well on both local and regional scales and provided a quan-
titative estimate of spatial distribution of snow wetness at 
the top snow layer. 

(2) Snow water equivalence estimation from SAR.  
Various ground experiments showed different relationships 
between radar backscattering coefficient and Snow Water 
Equivalence (SWE). For example, Ulaby and Stiles [112] 
showed that backscattering at 8.2 and 17.0 GHz had a posi-
tive relation with SWE. Similarly, a positive relationship 
was also observed by an experiment over a smooth subsur-
face at 5.3 and 9.5 GHz [113]. On the other hand, negative 
relationships have been observed at similar frequencies, 5.3 
and 9.6 GHz [107]. In addition, Rott and Matzler [114] ob-
served no significant difference between snow-free and dry 
snow covered regions at 10.4 GHz. Each field experiment 
represented particular snow and ground conditions. The 
existence of both positive and negative relationships be-
tween radar backscattering and snow water equivalence 
indicates that this relationship is quite complex. Radar 
backscattering coefficient measurements over seasonal 
snow covered terrain can, generally, be expressed as a four 
component model: 
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 a
pq  is the backscattering from snow surface,  v

pq  is the 

volume backscattering from snow layer,  gv
pq  represents 

the interaction term between snow volume and the snow- 
ground interface, and  g

pq  is snow-ground interface 

backscattering. The subscripts p and q represent polarization 
status of the observed radar signals, T is the power transmit-
tivity at the air-snow interface, L is the snow-pack attenua-

tion factor. The SWE inversion algorithm can be developed 
based on accurate backscattering model and deep under-
standing of the scattering mechanisms. The classical algo-
rithm is the algorithm developed by Shi and Dozier [115], 
which used multi-frequency (L, C, X band) and dual    
polarization (VV and HH) data for SWE inversion. 

This algorithm uses L-band measurements to estimate 
snow density and the underground dielectric and roughness 
properties. The relationship between underground backscat-
tering signals at C-band and X-band can be estimated   
with the dielectric and roughness properties estimated  
from L-band measurements. Then, using C-band and 
X-band measurements with the minimized effects of the 
underlying backscattering signals estimates snow depth and 
ice particle size. This algorithm requires all 3 SIR-C/X-SAR 
frequency measurements. The detail of this algorithm is as 
follows. 

First, L-band measurements were used to estimate snow 
density and the underground dielectric and roughness prop-
erties. At microwave frequencies, the absorption coefficient 
(the imaginary part of the dielectric constant) of ice is small, 
and snow grains are also small compared to an incident 
L-band wavelength (24 cm). Thus, when the electromag-
netic wave passes through the snowpack, versus directly 
striking the ground, the following differences occur: the 
incidence angle at the snow-ground interface is smaller, the 
incident wavelength at the snow-ground interface is shorter 
because the snow is dielectrically thicker than air, the 
reflectivity at snow-ground interface is reduced due to the 
lower dielectric contrast at the snow-ground interface than 
the air-ground, and the total energy incident on the snow- 
ground interface is reduced due to the power loss at the 
air-snow interface. Based on the above understanding of 
snow density effects on radar backscattering at L-band, Shi 
and Dozier [115] developed an algorithm to estimate snow 
density by characterizing the dependence of the surface 
backscattering on both the incidence angle and the wave-
length. It was done by establishing a VV and HH polariza-
tion backscattering database using the IEM model [9] over a 
wide range of incidence angles, dielectric and roughness 
conditions, and incidence wave numbers, corresponding to a 
range of snow densities from 100 to 550 kg/m3. Then, the 
relationship of HH and VV backscattering signatures with 
the wide range of surface dielectric and roughness condi-
tions at each incidence angle and wave number was charac-
terized by using regression analysis. In the algorithm, for a 
given L-band SAR measurements of VV and HH SAR data, 
we can estimate the snow dielectric constant. It does not 
require a priori knowledge of the dielectric and roughness 
properties of the soil under the snow. Furthermore, snow 
density can be estimated from Looyenga’s semi-empirical 
dielectric formula. After the snow density, ground dielectric 
constant, and surface RMS height were estimated by L-band 
SAR measurements, through analyses of the simulated data, 
the techniques for estimating snow depth and ice particle 
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size using SIR-C C-band and X-SAR measurements were 
developed by Shi et al. [116]. The main idea in this algo-
rithm is to develop a semi-empirical model to characterize 
the relationships between the ground surface backscattering 
components at C-band and X-band, and to parameterize the 
relationships between snowpack extinction properties at 
C-band and X-band. Finally, the SWE can be calculated by 
the estimated snow density and snow depth. 

The technique described above for estimation of SWE 
requires five measurements: L-VV and L-HH to estimate 
snow density and ground dielectric and roughness proper-
ties, plus C-VV, C-HH, and X-VV to estimate snow depth 
and grain size. The sensitivity analysis indicated that the 
C-band SAR measurements were affected mainly by the 
ground surface properties. The parts of the signal that comes 
from a typical snowpack at C-band are about 30% and 15% 
for HH and VV polarization, respectively. The C-band 
measurements are expected mainly sensitive to soil surface 
condition below snow layer. Estimation of snow depth us-
ing C-band SAR measurements, therefore, requires an ac-
curate technique to estimate the ground backscattering 
component. At X-band it about 60% of the signal comes 
from the snowpack itself. Thus, we expect that the meas-
urement is much more sensitive to snowpack and that the 
requirement for estimation of the ground backscattering 
component is less severe for radar measurements at X-band 
or higher. The global SAR snow monitoring programs such 
as ESA CoReH2O and NASA SCLP both adopted high 
frequency polarimetric SAR (X and Ku band), and the cor-
responding  research on the inversion algorithm has also 
been carried out. For example, Shi proposed an algorithm to 
estimate the volume backscattering from total observed 
backscattering by de-polarization index, and then the SWE 
was estimated by dual-frequency observations, which is an 
important possible solution [117, 118]. 

3  Soil moisture retrieval with microwave re-
mote sensing 

Soil moisture is one of the most important parameters on 
the land surface. Due to its significant influence on the 
global water cycle, energy balance and the climate varia-
tion, soil moisture monitoring on the local and global scale 
is an essential condition for the research of global water 
cycle rule, watershed hydrological model, and the moni-
toring of crop growth and drought. The main methods to 
retrieve surface soil moisture with microwave remote 
sensing are active microwave remote sensing methods 
based on Radar or scatterometer, passive retrieval methods 
based on radiometer, and the methods combining both 
active and passive microwave remote sensing. The active 
microwave can provide high spatial resolution, and is sen-
sitive to surface roughness and vegetation construction, 
but with a complex data processing and low revisit rate. 

However, the passive microwave can provide high tem-
poral resolution, and is sensitive to the soil moisture and 
with a simple data processing. But the spatial resolution is 
low. Therefore, more and more researchers consider com-
bining them both and taking the advantages of each in the 
retrieval of surface soil moisture. 

3.1  Passive microwave soil moisture retrieval 

With a highly temporal frequency, passive microwave re-
mote sensing provides measurements for daily regional and 
global soil moisture retrieval. There already have been sev-
eral space-borne microwave radiometers, including SSMR, 
SSM/I, FY-3, WindSat, AMSR-E, and SMOS etc. SSMR, 
SSM/I, FY-3, WindSat, and AMSR-E are multi-frequency 
configured, whose lowest frequency band is not lower than 
C-band. Since radiometer with a lower frequency band is 
more sensitive to the soil moisture, soil moisture retrieval 
mainly uses measurement of C-band, X-band or Ku-band as 
input data. However, as the signal’s penetrability of vegeta-
tion layer in these frequencies is limited, soil moisture re-
trieval with these bands is only applied to area of the bare 
soil and low vegetation. For obtaining the precise soil 
moisture of land covered by vegetation, the lower frequency 
instrument is required. At present, researchers are focusing 
on the soil moisture retrieval algorithm specific to the in-
strument of L-band. SMOS is designed by European Space 
Agency (ESA) for retrieving soil moisture and ocean salin-
ity, launched in Nov. 2009. SMOS is the first radiometer 
receiving the earth’s emission energy at L-band by the in-
terferometry technique. SMOS has superiority at instrument 
configurations, which are multiple incidence angles and 
L-band frequency having good penetrability of vegetation 
layer and more sensitive to soil moisture. Compared to   
the AMSR-E, it is more reliable and more precise. The 
on-going NASA Soil Moisture Active and Passive (SMAP), 
mission will observe the earth using combined active    
and passive secsors at L-band. SMAP will provide more 
precise soil moisture information and enhance the spatial 
resolution. 

Current soil moisture retrieval algorithm of AMSR-E is 
iterative method. By using -as forward model to calcu-
late theoretical brightness temperature values, the soil 
moisture estimates are adjusted iteratively until the differ-
ence between the computed and observed brightness tem-
peratures is minimized in a least squares sense. The retrieval 
algorithm of SMOS follows the AMSR-E’s. However, re-
search results show that there are some shortcomings in the 
algorithms of SMOS and AMSR-E. 

Firstly, bare surface emission is described by the 
semi-empirical model Q/H model, and Q/H model has the 
assumption of the equal effect of the surface roughness on 
surface emissivity in both v- and h-polarizations [119, 120]. 
But, there is a big error between the surface roughness from 
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the field measurements and the surface roughness fitted by 
the Q/H model from the soil moisture measurements or die-
lectric constant. Recently, through researching on the theo-
retical surface emission model integral equation model 
(IEM) [19, 121], it indicates that for the two different po-
larizations, the effect of roughness on the effective reflec-
tivity or emission differs in both magnitude and direction, 
which depends on the incidence angle, surface roughness 
and dielectric character. At big incidence angle such as 
AMSR-E, effective surface reflectivity in V-polarization is 
greater, but in H-polarization the effective reflectivity is 
smaller than Fresnel reflectivity at the same soil moisture. 
This effects the description of the relationship between 
V-polarization emission signal and H-polarization, espe-
cially on the amount of V/H polarization ratio, leading to 
the error of soil moisture estimated from the V- and 
H-polarization measurements. Shi et al. [121] developed a 
method for retrieving soil moisture using the V- and 
H-polarization measurements to minimize the effect of 
roughness. 

Secondly, iterative method has some shortcomings [122]. 
Measurements of microwave radiometer depend on surface 
soil moisture, roughness, attenuation, and extinction of the 
vegetation layer, as well as temperature of soil surface and 
vegetation canopy. Through constructing cost function, ad-
justing model parameters, and minimizing the difference 
between the computation and measurements, iterative 
method retrieves the soil moisture. In the procedure of soil 
moisture inversion, other physical parameters such as sur-
face roughness, attenuation, and single scattering albedo of 
the vegetation layer, temperature of soil and vegetation 
canopy, have effects in minimizing the difference between 
the value simulated and the value measured. So, iterative 
algorithm cannot be used to determine which variable 
changes the amount of satellite measurement in mechanism. 
Iterative method has the problem of multiple solutions. 
Through developing the retrieval theory based on the phys-
ical model, it is helpful to overcome the above shortcomings 
and improve the inversion accuracy. In addition, passive 
microwave soil moisture retrieval algorithm also includes 
neural network (NN) method [123–125]. 

3.2  Active microwave remote sensing of soil moisture 

Radar backscattering coefficient is affected mainly by the 
surface characteristic, such as surface roughness, dielectric 
constant of soil, and property of vegetation layer. In order to 
perform soil moisture retrieval, we need to establish the 
relationship between the radar scattering coefficient and soil 
volumetric water content. For bare ground and sparse vege-
tation, the researchers have achieved remarkable success in 
the study of the algorithm of soil moisture retrieval. As for 
the case that vegetation effect cannot be neglected, the re-
searchers have also made some progresses. We will briefly 
introduce the retrieval algorithm for the bare surface case 

and vegetated surface below. Because the inversion often 
belongs to the “ill-posed” problem, there must be uncer-
tainty relationship between scattering coefficient and soil 
moisture. But the use of multi-polarization radar observa-
tions can reduce the uncertainty, and illustrate a more pre-
cise relationship between the two. For the case of bare 
ground and sparse vegetation surface, the researchers have 
developed a quantitative retrieval algorithm of soil moisture 
from dual-polarized L-band SAR image [126, 127], or from 
three polarization radar observation [128]. Based on simu-
lated backscatter of bare surface of different surface rough-
ness and soil moisture conditions by IEM model, Shi et al. 
[127] developed a semi-empirical bare surface backscatter-
ing model, establishing the relationship between L-band VV 
and HH polarization backscatter coefficient, dielectric con-
stant and surface power spectrum of roughness, which is 
shown in eqs. (5) and (6). This model used simulation data 
of a theoretical model to overcome the dependence of the 
specific site data, with a certain degree of universality. 
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where  pp  is polarization amplitude, sr is roughness pa-

rameter, and 0 pp  is backscatter coefficient. 

The above model is established for the bare ground or 
sparse vegetation cover conditions. If we take the algorithm 
for inversion of soil moisture for vegetation cover surface, it 
will cause underestimation of the soil moisture content or 
overestimation of the surface roughness. To better under-
stand the effect of vegetation layer on radar backscatter, the 
current study of soil moisture retrieval for vegetated surface 
is mainly the following: 

(1) Inversion algorithm using Multi-polarization data 
[129].  In order to inverse soil moisture under low vegeta-
tion cover, the algorithm first assumed that the vegetation 
layer consists of randomly distributed dielectric discs, and 
then created a simulation database based on the radiative 
transfer model. According to the simulation database, the 
algorithm first divides the total scattering into two parts: 
one part is directly from the soil surface attenuated by the 
vegetation layer; the other part is the combination of vege-
tation scattering and vegetation-surface interactions. The 
surface scattering component can be accurately separated by 
this algorithm for the VV, HH, and VH polarization, with 
the root mean square error 0.12, 0.25, and 0.55 dB respec-
tively. After the separation, the soil moisture and compre-
hensive correction factor of surface roughness and vegeta-
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tion attenuation can be estimated. For the simulated data, 
the mean square error can be less than 4%. 

(2) Inversion algorithm using combination of ancillary 
data and radar data.  For correction of vegetation effects, 
based on empirical relationships, the optical data or syn-
chronized measurement data (vegetation water content, leaf 
area index, etc.) are used to estimate vegetation scattering 
components and vegetation attenuation factor, through 
which the impact of vegetation on radar observations can be 
corrected and the soil moisture can be estimated [130, 131]. 

(3) Soil moisture change detection algorithm using repeat 
observations.  Due to the complexity of the problem of 
scattering of surface under vegetation cover, using short- 
period repeated radar observations to estimate changes of 
soil moisture is the start point of the current study. If the 
surface roughness and vegetation are considered within a 
certain period of time, the difference of scattering coeffi-
cient between repeated radar observations could be at-
tributed to changes in the surface dielectric constant. 
Therefore, repeated observations can provide information of 
the relative change of soil moisture, and thus improve the 
accuracy of soil moisture inversion. 

The key to the realization of this method is how to cor-
rect the influence of vegetation. The researchers proposed 
different algorithms. For example, one can apply the Free-
man’s decomposition technique [132] or utilize optical aux-
iliary data to correct vegetation volume scattering [133], 
then use the ratio of two observations to estimate the rela-
tive changes in soil moisture. 

3.3  Combined active and passive microwave remote 
sensing algorithms 

The approaches used combined active and passive micro-
wave remote sensing to retrieve soil moisture may be bro-
ken up into the following categories: (i) The forward model 
of active and passive are made respectively according to the 
relationship between remote sensing data and soil surface 
parameters, and then soil moisture and vegetation properties 
were estimated simultaneously. Lee et al. [134] used the 
10.7 GHz Tropical Rainfall Measuring Mission (TRMM) 
microwave image (TMI) channel and 13.8 GHz precipita-
tion radar(PR) observations to estimate the near surface soil 
moisture and vegetation properties. The adopted strategy 
was first to calibrate the emission/backscattering model 
parameters (using in situ observations of soil moisture and 
LAI) to adequately specify the integrated nature of vegeta-
tion canopy and soil properties. Subsequently, the calibrated 
models were used within an inverse solution to retrieve soil 
moisture and LAI by simultaneously minimizing the disa-
greement between simulated and satellite measured bright-
ness temperature and backscatter coefficients. The tech-
nique was applied on TRMM radar/radiometer observations 
from three consecutive years and evaluated against in situ 
near-surface (5 cm) soil moisture measurements from Ok-

lahoma Mesonet, showing a consistent performance. The 
active backscatter coefficients were simulated by Geometric 
Optics Model (GOM) and water-cloud model for vegetation 
correction. The ω-τ was used for brightness temperature 
simulated, the empirical model of Jackson was for vegeta-
tion and a constant was assigned to surface roughness. In 
the algorithm, the active measurements as an additional 
channel are combined to the passive channel. This was good 
for the iterative inversion but did not take full advantage of 
the high spatial resolution of active observations. The dif-
ference on the spatial scale between active and passive mi-
crowave data was not sufficiently explained. Additionally, 
the model requires many ancillary data, which limits its 
global application. The iterative algorithm cannot explain 
the relationship of the various parameters in the model. (ii) 
The surface roughness and vegetation parameters were es-
timated from active microwave measurements then used in 
the passive model to inverse soil moisture. O’Neill et al. 

[135] proposed a combined active and passive microwave 
soil moisture retrieval algorithm under vegetation cover. 
L-band radar was employed to calculate vegetation trans-
missivity and scattering using discrete vegetation scattering 
model. These parameters were then used in a soil moisture 
prediction algorithm based on the passive microwave data 
from L-band radiometer. The predicted soil moisture of two 
experiments matched to that measured was excellent, with 
RMSE of about 2.4%. However, in the algorithm, surface 
roughness correction was not explained and the in situ 
measurements of canopy geometry were required in estima-
tion vegetation parameters using active microwave data. (iii) 
The active microwave data are combined with passive ob-
servations based on the mathematical methods to retrieve 
soil moisture. Njoku et al. [136] combined radiometer and 
radar measurements of the Passive and Active L-band and 
S-band airborne sensor (PALS) during the 1999 Southern 
Great Plains (SGP99) experiment to retrieve soil moisture 
using the change detection method. Assuming that the ef-
fects of vegetation and surface roughness are relatively in-
variant on the short time scales, the change of radiometer or 
radar observations is only due to the soil moisture variant. 
The approximate linear relationship between the radar 
measurements and soil moisture was also hypothesized. Soil 
moisture for two different conditions, “dry” and “wet”, were 
first estimated using the H polarization of L-band. Then the 
estimated soil moisture under two conditions was used as 
“truth” with radar data to calibrate the slops and intercepts 
of radar liner equations. These coefficients were then used 
to derive soil moisture using radar data only. Soil moisture 
derived by this algorithm has good accuracy in the calibra-
tion period, and the temporal and spatial distributions show 
similarity to those from radiometer data. However, with 
temporal changes the accuracy of estimated soil moisture 
decreases due to the applicability of calibrated coefficients, 
vegetation changes, and other factors. Narayan et al. [137] 
applied the algorithm and hypothesis similar to Njoku to 
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estimate soil moisture combined active AIRSAR with 
PALS passive data acquired during SMEX02 campaign. 
The approach takes advantage of the approximately linear 
dependence of radar backscatter change on soil moisture 
change as vegetation unchanged. The ratio of radar backscatter 
coefficients change to soil moisture considered as an effect 
factor of vegetation and surface roughness. It was assumed 
that the change of soil moisture measured by radiometer at 
lower spatial resolution is equal to the average of all the 
radar observations within it. All the radar pixels within the 
radiometer pixel were given uniform vegetation and surface 
roughness characteristics. So the relationship of soil  
moisture change between active and passive was made. The 
soil moisture change in the radar pixel can be estimated   
if the change of radiometer pixel was known according to 
the relationship between them. Though the algorithm im-
proves spatial resolution, the result is just the soil moisture 
change. In the case of the SMEX02 experiments, each ra-
diometer footprint lies completely within an agricultural 
field with fairly uniform vegetation characteristics. In fact, 
the revisit time of current space-borne active microwave 
sensors cannot meet the requirements and it is difficult to 
ensure uniform vegetation characteristics in a passive mi-
crowave pixel with tens kilometers resolution. These limit 
the algorithm applied to the space-borne sensors on a con-
siderable extent. 

Additionally, aiming at developing a combined radar and 
radiometer algorithm for SMAP soil moisture retrieval,  
Das et al. [138] considered that the land vegetation and sur-
face roughness factor vary on time scales longer than that 
those associated with soil moisture. In other words, the 
changes of radar or radiometer observations are only due to 
the soil moisture change over a short period of time. The 
increase of surface soil moisture will lead to decrease in 
radiometer and increase in radar measurements, and vice- 
versa. Therefore, over a short period of time the radar and 
radiometer measurements are expected to have functional 
relationship, and based on this a linear function was hy-
pothesized. The unknown parameters slop and intercept of 
linear functional are dependent on the dominant vegetation 
and soil moisture characteristics. An intermediate resolution 
disaggregated brightness temperature field (9 km) was pro-
duced by blending fine-scale spatial heterogeneity detected 
by radar observations with coarser-scale radiometer (36 km) 
measurements. These disaggregated brightness temperatures 
are then used with established radiometer-based single 
channel algorithm to retrieve soil moisture at the intermedi-
ate resolution. The algorithm directly retrieves soil moisture 
from the intermediate resolution brightness temperature, 
and the low resolution soil moisture is not required. It effec-
tively limits the error cumulative from low resolution to 
medium-resolution retrieved soil moisture. However the 
time scale of vegetation and surface roughness invariant 
was not defined clearly and the radiometer-based sin-
gle-channel algorithm requires many ancillary data as input. 

4  Microwave remote sensing of land surface 
temperature 

Land surface temperature is also a key parameter in nu-
merical weather-prediction model that leads to significant 
forecasting improvement in the physics of land surface 
processes on regional and global scales, combining the 
results of all surface-atmosphere interactions and energy 
fluxes between atmosphere and the ground. In the past 
twenty years, the rapid development of thermal infrared 
remote sensing technology provides a new way to quickly 
obtain the spatial information of surface temperature in 
regional scale, but thermal remote sensing is influenced 
much by clouds, atmospheric water vapor content, and 
rainfall. Over 60% areas in MODIS LST product are in-
fluenced by cloud and rainfall. Micro-wave remote sensing 
has advantage in these aspects because it can overcome 
these shortcomings of thermal remote sensing, such as 
cloud cover, smoke, and aerosol effects. So it becomes 
urgent to study how to use passive microwave data to re-
trieve land surface temperature. 

In fact, it is very difficult to retrieve land surface temper-
ature from passive microwave remote sensing data, because 
there are always the N +1 unknowns (N-emission rate and a 
surface temperature) for N frequency measurements of the 
thermal radiation, which is a typical ill-posed inversion 
problem. Moreover, the microwave emissivity is determined 
mainly by the dielectric constant, which is influenced by the 
physical temperature, salinity, moisture content, soil texture, 
and other factors (vegetation structure and type). These 
make the development of a common physical algorithm 
very difficult. Here two typical and representative works are 
introduced. Mcfarland et al. [139] did some research and 
analysis for retrieving land surface temperature from pas-
sive microwave SSM/I data. Although it is limited by the 
data acquisition, it got many useful conclusions. The impact 
of water must be corrected when there is water in the land 
surface. The high dielectric constant of water reduces the 
emissivity of 19 GHz, and the polarization of the radiation 
is very high for water, so the brightness temperature de-
creases and the difference of polarization between bright-
ness temperature increases because of the surface water. 
The difference of brightness temperature between 37 and 19 
GHz can be used to revise the impact. The water vapor has 
influence for the emission of the 37 GHz, so the difference 
of 37 and 22 GHz vertical polarization can be used to revise 
the radiation effects of atmospheric water vapor. Mao et al. 
[140] made the MODIS LST product as the large scale land 
surface data of the AMSR-E, which overcomes the difficul-
ty in obtaining the large scale ground truth measurement of 
LST matching the pixel scale of passive microwave 
AMSR-E data at the satellite pass. This also provides an 
application for researching how to use multi-sensor to re-
trieve surface parameters and mutual correction. Three rep-
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resentative surface types are selected as the study areas: 
Northeast China (forest), North Africa (desert), and Tibet 
(snow). In this research, the best single band to retrieve land 
surface temperature is found by regression analysis between 
MODIS LST product and brightness temperature of 
AMSR-E, and then the best method is also built through 
eliminating the influence of soil water and atmosphere wa-
ter by simulation of AIEM model. The analysis showed that: 
the error is relatively large when the sample data from three 
typical regions are put together to make regression analysis; 
the retrieval accuracy will be greatly improved when the 
sample data from Tibet region are excluded. The main rea-
son is due to the impact of snow and frozen. The surface 
radiation mechanism of snow and permafrost is different 
from others. The analysis also shows that the penetration of 
different microwave bands is different for the land surface 
and vegetation, which determines the satellite receiver to 
get different surface radiation energy. The influence of at-
mospheric water vapor, clouds and rain particle is the 
smallest for the low-frequency of microwave, so the 37 V 
(GHz) brightness temperature is most suitable for retrieving 
land surface temperature. In the absence of atmospheric 
scattering and re-radiation, high frequency has a lower die-
lectric constant of water and the thicker of light radiation 
compared with low frequency, and the regression analysis 
between the brightness of 89 V (GHz) and MODIS surface 
temperature products indicates that the correlation is the 
maximum. So the high frequency of vertical of the bright-
ness temperature can improve the retrieval accuracy of sur-
face temperature. In the local analysis, they found that the 
radiation mechanism is very different when the local surface 
temperature is different, especially when surface tempera-
ture is less than 273 K. In order to improve the retrieval 
accuracy, the retrieval algorithm should be built for differ-
ent conditions, especially when the land surface temperature 
is fewer than 273 K. The land surface should be at least 
classified into three types: water covered surface, snow- 
covered surface, and non-water and non-snow-covered land 
surface. According to the different land surface temperature, 
the retrieval frame can be depicted as Figure 4. 

The soil moisture, roughness and land surface tempera-
ture are changing with the weather, time and place, which 
makes the retrieval more complicated, because different 
combinations of these factors can form the same and dif-
ferent emissivity. The various physical parameters are not  

 

 

Figure 4  Flow chart of land surface temperature retrieval by passive 
microwave remote sensing. 

isolated from each other. In order to take full advantage of 
the potential relationship between the geophysical parame-
ters, Mao et al. [141] used multi-sensor/multi-resolution 
features of Earth Observing System (EOS/AQUA) and 
neural network to retrieve land surface temperature from 
passive microwave AMSR-E data. The analysis of simula-
tion data by AIEM indicates that the neural network neural 
network can be used to retrieve land surface temperature 
from passive microwave, and the average error is under 
2°C.  

5  Vegetation parameters retrieval using mi-
crowave remote sensing 

As one of the most active factors and principal parts in land 
ecosystem, vegetation accounts for more than half of land 
surface area. It plays an essential role in human living envi-
ronment and provides abundant information to indicate the 
natural environment characteristics. Furthermore, vegetation 
is an important component of global carbon source and 
carbon sink and is indispensable in global water cycle. Re-
mote sensing makes it possible and effective to monitor 
land surface vegetation in real time at global scale. 

5.1  Vegetation parameters retrieval with passive mi-
crowave   

Passive microwave sensors are sensitive to variations in 
vegetation properties in a relatively thick canopy. At present, 
there have been many studies on vegetation parameters re-
trieval based on passive microwave data. One commonly 
used tool in vegetation monitoring is remote-sensing-based 
index, which is an effective indicator of vegetation condi-
tion and has been successfully used for vegetation monitor-
ing, soil moisture, and vegetation water content retrieval. As 
a result, it is significant and necessary to develop vegetation 
indices based on microwave remote sensing data to monitor 
vegetation more effectively. With decades of development, 
many vegetation indices from passive microwave instru-
ments have been explored in previous studies, such as mi-
crowave polarization difference temperatures (MPDT) 
[142–145], Microwave Polarization Difference Index 
(MPDI) [146–148], and Microwave Vegetation Indices 
(MVIs) [149]. Some of them have been used widely in the 
related fields. 

Early studies have shown that microwave polarization 
difference temperatures (MPDT) at 37 GHz NDVI were 
highly correlated to NDVI [130] and the relationship varied 
with the leaf water content [130, 150, 151]. According to 
microwave radiative transfer theory and field experiments, 
MPDT is related not only to vegetation properties but also 
to surface temperature, soil moisture, and roughness. To 
minimize the effect of physical temperature, Becker and 
Choudhury developed the normalized microwave polariza-
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tion difference index (MPDI) [152]. MPDI can be described 
using the following formula [ ( ) ( )] /b bMPDI c T V T H   

[ ( ) ( )]b bT V T H  for a given frequency, where C is a scale 

factor; ( )bT V  and ( )bT H are the brightness temperatures 

of the given frequency in H and V polarization respectively. 
To some extent, MPDI can eliminate the effect of tempera-
ture. 

Combining the data of microwave and thermal infrared, 
Paloscia and Pampaloni calculated the normalized bright-
ness temperature, and developed a normalized brightness 
temperature difference between two frequencies ( nT ): 

2 1( ) ( )n n nT T f T f   [147]. It minimized the effect of tem-

perature on vegetation properties and could be used to re-
trieve the biomass and vegetation water content.  

Given the effects of soil parameters, such as soil mois-
ture and roughness, the application of MPDI and nT  in 

monitoring global vegetation was greatly restricted. Those 
vegetation indices can be used only when all the other pa-
rameters are uniform, which is impractical at microwave 
pixel scale. For a single microwave pixel, it is inevitable for 
the signals to be affected by different land conditions due to 
the coarse spatial resolution, which makes it an obstacle in 
the application in global vegetation monitoring. Njoku and 
Chan [153] proposed a parameter combining vegetation and 
soil roughness through analyzing multi-temporal AMSR-E 
data. The variation of this parameter was controlled mainly 
by vegetation water content. But this algorithm had many 
limitations in global application and only reflected the rela-
tive variation of vegetation. 

Min and Lin [154] defined a new vegetation index, 
which combined the parameters of vegetation and roughness 
using multi temporal AMSR-E data. It was called the micro-
wave emissivity difference vegetation index (EDVI) and 
showed by the formula 

1 2 12 [ ( ) ( )] / [ ( )  bp bp bpT f T f T f  

2( )].bpT f  This index can be calculated by using brightness 

temperature of 19 and 37 GHz and can be used in dense 
forest directly without observation to the ground. It     
has shown that EDVI was more sensitive to evapotranspira-
tion than NDVI and could be used in turbulent flux estima-
tion. 

Based on zero-order microwave radiative transfer model, 
Shi et al. [149] derived new passive microwave vegetation 
indices (MVIs) based on AMSR-E data. Different from 
those in the previous studies, MVIs were independent of 
soil emission signals and were related only to vegetation 
properties (Figure 5), such as vegetation coverage, biomass, 
temperature, size and geometry of vegetation components. 
Based on comparison between MVIs-B and vegetation wa-
ter content from SMEX02, there was a good correlation 
with R2=0.8436. Hence, it can be inferred that MVIs-B is a 
good indicator of vegetation water content and has the po-
tential of eliminating vegetation effect in soil moisture and  

 

Figure 5  Monthly mean value for MVI in April, 2003. 

vegetation water content retrieval process. 
With the launch of L band sensor Soil Moisture and 

Ocean Salinity (SMOS), passive microwave remote sensing 
study of vegetation has stepped into a new period of single 
frequency and multiple angles. On the one hand, the L band 
data can be used to monitor thicker canopy and thereby en-
hance the ability to detect the ground information in forest 
land because of its greater penetrability compared with 
higher frequencies. On the other hand, SMOS provides new 
opportunities in global vegetation study due to its multi-  
angle information, which is different from traditional sen-
sors. Chen et al. [155] has developed multi-angle vegetation 
index of L band through simulation using AIEM and analy-
sis of theoretical model. Based on field experiment data 
analysis, it has shown that the index was highly corrected to 
LAI. 

Besides, many studies on vegetation parameters retrieval 
are based on semi-empirical model or iterative algorithm 
directly without using vegetation indices. In the official land 
parameters retrieval algorithm of AMSR-E, vegetation wa-
ter content can be calculated at the same time when soil 
moisture was retrieved based on radiative transfer theory 
using iterative algorithm. In this algorithm, the temperatures 
of vegetation, soil and environment were set to be equal. 
The contribution of outer space radiation was ignored and 
the upward radiation was the same as downward. It has 
been demonstrated that the daily product of vegetation wa-
ter content with 60 km spatial resolution has an accuracy of 
0.15 kg/m2. Based on this study, Sahoo et al. [156] im-
proved the hypothesis and the simplifying method and de-
veloped a new algorithm to retrieve soil moisture and vege-
tation water content. Wigneron et al. [157] proposed a 
method to retrieve crop water content through combining 
ω-τ model and a uniaxial crystal model, which was applied 
to thin stem canopy. In this study, optical depth τ was con-
sidered to be correlated to vegetation water content, so that 
we can minimize the difference between observed and sim-
ulated emissivity and then estimate vegetation water content. 
Chai et al. [158] has revealed the linear relationship be-
tween the absorbing component of optical depth and vege-
tation biomass by building a simulating database according 
to AMSR-E configuration. This work provided a new way 
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to retrieve biomass in the future research. On the basis of 
Chai’s conclusion, Zhang et al. [159] has developed an al-
gorithm to estimate the biomass of North-East Asian area 
using multi-angle information of SMOS with a new param-
eterized model. In that paper, he obtained structural param-
eters of different kinds of vegetation with the help of L sys-
tem firstly, and used them as input of the first order radative 
transfer model for database simulation. Based on the simu-
lation database, a multi-angle parameterized vegetation 
model was built and used to estimate the biomass. The R2 
was higher than 0.6 according to the referencing dataset. 
The research can be viewed as an exploration and prelimi-
nary application of passive microwave remote sensing in 
vegetation biomass estimation. 

5.2  Vegetation parameters retrieval with active mi-
crowave  

Although only worked for about 100 days, the SAR onboard 
Seasat opened a new era of remote sensing. SAR has the 
capability of working at all time and under all-weather con-
ditions because it works on microwave and is active sensor. 
The research on space-borne and airborne SAR data shows 
that it has the potential for the retrieval of vegetation pa-
rameters especially over areas covered by cloud or fogs all 
year. A serial of SAR systems developed jointly by Euro-
pean Space Agency (ESA), Japanese space Agency (JAXA), 
Canadian Space Agency (CSA), and NASA accelerated the 
application of SAR data in the estimation of vegetation pa-
rameters.        

Besides the characteristics of terrain objects, Radar 
backscattering is highly affected by system parameters in-
cluding incidence angle, wavelength and polarization. Radar 
systems are designed using specific parameters according to 
its objectives. In the initial phase, SAR can only provide the 
backscattering coefficients. With the development of inter-
ferometric SAR technology, the interferometric coherence, 
which was initially used to evaluate the quality of InSAR 
data, was found to be correlated with terrain objects. Ac-
cording to the analysis method, the application of SAR data 
can be divided into two categories, i.e., qualitative and 
quantitative analysis. Qualitative analysis is mainly referred 
to image classification whereas quantitative analysis is 
quantitative estimation of parameters of vegetation struc-
tures. The vegetation parameters that can be estimated from 
SAR data include biomass, height and leaf area index (LAI). 
Therefore, this section will be extended to four aspects: (1) 
SAR classification; (2) estimation of biomass; (3) retrieval 
of vegetation height; (4) estimation of LAI. 

5.2.1  SAR image classification 

In the first stage of SAR application, SAR image classifica-
tion is the main research directions. The classification was 
based mainly on multi-temporal, multi-frequency, multi- 
angle and multi-polarization data. Cimino et al. [160]   

explored the potential of forest classification using multi- 
angle data. The results showed that multi-angle data can be 
used to classify the forest composed of different species or 
single-species forest with different forest structures. Ranson 
et al. [161] tried forest classification using full polarization 
AIRSAR data of C, L and P bands acquired in winter 
(March 3) and summer (September 2). The results showed 
that with principal component analysis of temporal data sets 
(winter and late summer), SAR images can be classified 
into general forest categories such as softwood, hardwood, 
regeneration, and clearing with better than 80% accuracy. 
Other non-forest classes such as bogs, wetlands, grass, and 
water were also accurately classified. Classifications from 
single date images suffered in accuracy. The winter image 
had significant confusion of softwoods and hardwoods with 
a strong tendency to overestimate hardwoods. Modeling 
results suggest that increased double- bounce scattering of 
the radar beam from conifer stands because of lowered die-
lectric constant of frozen needles and branches was the con-
tributing factor for the misclassifications. Pierce et al. [162] 
proposed a knowledge-based classification method of po-
larimetric SAR images. The classifier design uses 
knowledge of the nature of radar backscattering from sur-
faces and volumes to construct appropriate discriminator in 
a sequential format. The classifier used L and C band po-
larimetric SAR measurement of imaged scene to classify 
individual pixels into one of four categories: tall vegetation 
(trees), short vegetation, urban, or bare surfaces, with the 
last category encompassing water surfaces, bare soil surfac-
es and concrete or asphalt-covered surfaces. Among all 
cases and all categories, the classification accuracy ranged 
between 91% and 100%. The variables used in the classifier 
design include the backscattering coefficients 

0 0 0( ), ( ), ( ),vv hh hvL L L   and the phase difference of 

co-polarization hh vv  . The classifier also used the tex-

tural information by computing the normalized variance for 
each pixel. By using 5×5 pixel window centered at the pixel 
of interest, the mean  and standard deviation  of 25 pixels 
are computed for each magnitude. The measured normal-
ized variance for a given polarization is composed of com-
ponents: a component due to speckle and a component due 
to scene texture (spatial inhomogeneity). The speckle vari-
ance is target-independent and is a function of the number 
of independent samples. The window size can be deter-
mined from knowledge of the multi-look processing algo-
rithm or can be estimated directly from the image by calcu-
lation the variance for texture-less target such as a calm 
water surface. The speckle variance is the same for all po-
larizations. Given the normalized variance and the comput-
ed speckle variance, we can get the textural variance. In the 
knowledge-based classifier, the urban pixels are first sepa-
rated from everything else. It is characterized by dou-
ble-bounce reflection mechanism resulting in a co-polarized 
phase difference close to ±180°. Additionally, urban scenes 
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exhibit higher values of image texture than do other distrib-
uted targets. The tall vegetation can be separated by L band 
cross-polarization backscattering coefficients in the second 
step. C band cross-polarization and L band texture infor-
mation can be used to discriminate low vegetation. Rignot 
et al. [163] separated five vegetation types using fully po-
larimetric SAR data acquired by AIRSAR dominated by 1) 
white spruce, 2) balsam poplar, 3) black spruce, 4) al-
der/willow shrubs, and 5) bog/fen/nonforest vegetation. 
Accuracy of forest classification is investigated as a func-
tion of frequency and polarization of the radar, as well as 
the forest seasonal state, which includes winter/frozen, win-
ter/thawed, spring/flooded, spring/unflooded, and sum-
mer/dry conditions. Classifications indicate that C-band is a 
more useful frequency for separating forest types than L- or 
P-bands, and HV polarization is the most useful polarization 
at all frequencies. The highest classification accuracy, with 
90 percent of forest pixels classified correctly, is obtained 
by combining L-band HV and C-band HV data acquired in 
spring as seasonal river flooding recedes and before decid-
uous tree species have leaves. Saatchi et al. [164] investi-
gated the boreal forest classification using multi-frequency 
fully polarized AIRSAR data. A Bayesian maximum a pos-
teriori classifier was applied. The results showed that SAR 
images can be classified into dominant forest types such as 
jack pine, black spruce, trembling aspen, clearing, open 
water, and three categories of mixed strands with better than 
90% accuracy. The unispecies stands such as jack pine and 
black spruce are separated with 98% accuracy, but the ac-
curacy of mixed coniferous and deciduous stands was low 
due to some confusing factors. Saatchi et al. [165] explored 
the potential use of space-borne polarimetric synthetic ap-
erture radar (SAR) data in mapping land-cover types and 
monitoring deforestation in tropics. A supervised Bayesian 
classifier designed for SAR signal statistics is employed to 
separate five classes: primary forest, secondary forest, pas-
ture-crops, quebradao, and disturbed forest. The L- and 
C-band polarimetric SAR data acquired during the shuttle 
imaging radar-C (SIR-C)/X-SAR space-shuttle mission in 
1994 are used as input data to the classifier. The SAR data 
can delineate these five classes with approximately 72% 
accuracy. The confusion arises when separating old second-
ary forests from primary forest and the young ones from 
pasture-crops. When the number of land-cover types was 
reduced to three classes including primary forest, pas-
ture-crops, and re-growth-disturbed forest, the accuracy of 
classification increased to 87%. Comparison of SIR-C data 
acquired in April (wet period) and October (dry period) 
indicates that multi-temporal data can be used for monitor-
ing deforestation; however, the data acquired during the wet 
season are not suitable for accurate land-cover classification. 
Simard et al. [166] investigated the use of a decision tree 
classifier and multi-scale texture measures to extract the-
matic information on the tropical vegetation cover from the 
Global Rain Forest Mapping (GRFM) JERS-1 SAR mosaics. 

They focused on a coastal region of Gabon. The analysis 
proves that the radar backscatter amplitude is important for 
separating basic land cover categories such as savannas, 
forests, and flooded vegetation. Texture is found to be use-
ful for refining flooded vegetation classes. Temporal infor-
mation from SAR images of two different dates is explicitly 
used in the decision tree structure to identify swamps and 
temporarily flooded vegetation. Lee et al. [167] addresses 
the application of polarization combinations in the crop and 
tree age classification. The results showed that L-Band fully 
polarimetric SAR data are best for crop classification, but 
P-Band is best for forest age classification. For dual polari-
zation classification, the HH and VV phase difference is 
important for crop classification but less important for tree 
age classification. Also, for crop classification, the L-Band 
complex HH and VV can achieve correct classification rates 
almost as good as for full polarimetric SAR data, and for 
forest age classification, P-Band HH and VV should be used 
in the absence of fully polarimetric data. In all cases, mul-
tifrequency of fully polarimetric SAR is highly desirable.  

The methods described above are based mainly on the 
backscattering coefficients of multi-temporal and multi- 
frequency and image textures. Cloude et al. [168] proposed 
an entropy-based classification scheme for land applications 
of polarimetric SAR. The classical classification method 
divided the pixels into specific forest types whereas in the 
new method pixels were classified by their scattering 
mechanisms according to their position in the alpha-H plane. 
This led to the application of polarization decomposition on 
the land cover classification. Lee et al. [169] proposed an 
algorithm using a combination of a scattering model-based 
decomposition developed by Freeman and Durden and the 
maximum likelihood classifier based on the complex 
Wishart distribution. The first step is to apply the Freeman 
and Durden decomposition to divide pixels into three scat-
tering categories: surface scattering, volume scattering, and 
double-bounce scattering. To preserve the purity of scatter-
ing characteristics, pixels in a scattering category are re-
stricted to be classified with other pixels in the same scat-
tering category. An efficient and effective class initializa-
tion scheme is also devised to initially merge clusters from 
many small clusters in each scattering category by applying 
a merge criterion developed based on the Wishart distance 
measure. Then, the iterative Wishart classifier is applied. 
The stability in convergence is much superior to that of the 
previous algorithm using the entropy/anisotropy/Wishart 
classifier. Shimoni et al. [170] investigated the complemen-
tarity and fusion of different frequencies (L- and P-band), 
polarimetric SAR (PolSAR) and polarimetric interferomet-
ric (PolInSAR) data for land cover classification. A two- 
level fusion method was developed: Logistic regression  
(LR) as ‘feature-level fusion’ and the neural-network (NN) 
method for higher level fusion. For comparison, a support 
vector machine (SVM) was also applied. The results show 
that for both NN and SVM, the overall accuracy for each of 
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the fused sets is better than the accuracy for the separate 
feature sets. Moreover, fused features from different SAR 
frequencies are complementary and adequate for land cover 
classification, PolInSAR is complementary to PolSAR in-
formation, and both are essential for producing accurate 
land cover classification. Lardeux et al. [171] used a support 
vector machine (SVM) algorithm to assess the potential of 
radar data for tropical vegetation cartography. The contribu-
tion of the different polarimetric indicators is estimated 
through a greedy forward and backward method. The results 
are compared to those obtained with the standard Wishart 
approach. It is shown that, when radar data do not satisfy 
the Wishart distribution, the SVM algorithm performs much 
better than the Wishart approach. Sánchez-Lladó et al. [172] 
proposed the use of Deterministic Simulated Annealing 
(DSA) for Synthetic Aperture Radar (SAR) image classifi-
cation for cluster refinement. They used the initial classifi-
cation provided by the maximum-likelihood classifier based 
on the complex Wishart distribution that is then supplied to 
the DSA optimization approach. Entezari et al. [173] ap-
plied a classification algorithm based on the SVMs tech-
nique to the fully polarimetric AIRSAR L-band data. Sev-
eral parameters are extracted from SAR data, including the 
individual channel backscatter value, Pauli decomposition 
coefficients, Krogager decomposition coefficients, and ei-
genvector decomposition parameters. Different combina-
tions of polarimetric parameters are considered to assess the 
accuracy of the classification results. The accuracy of the 
SVMs is then compared with that obtained from several 
conventional classifiers, including the Maximum Likelihood 
classifier, Minimum Distance classifier, Mahalanobis Dis-
tance classifier, and Wishart classifier. The accuracy analy-
sis shows that, for classification of fully polarimetric data, 
SVMs perform more poorly than the Wishart classifier 
whereas they perform better than the Maximum Likelihood, 
Minimum Distance, and Mahalanobis Distance classifiers. 
Moreover, the highest accuracy is achieved by using the 
coefficients of Krogager decomposition in the classification 
procedure. Mishra et al. [174] carried out the eigen value 
decomposition and Pauli decomposition to separate classes 
on the basis of their scattering mechanisms. This work is 
carried out by decision tree classification that uses the 
knowledge-based approach. It has been demonstrated quan-
titatively that standard polarimetric parameters such as po-
larized backscatter coefficients (linear, circular and linear 
45°), co- and cross-pol ratios for both linear and circular 
polarizations can be used as information-bearing features 
for making decision boundaries. The classifier uses these 
data to classify individual pixel into one of the five catego-
ries: water, tall vegetation, short vegetation, urban and bare 
soil surface. The quantitative results shown by this classifier 
gives classification accuracy of about 88%. Haddadi et al. 
[175] presented an algorithm to extract optimized features 
of POLSAR images that are required for classification. The 
proposed algorithm involves three main steps: (i) feature 

extraction using decomposition algorithms, including both 
coherent and incoherent decomposition algorithms; (ii) fea-
ture selection using a combination of a genetic algorithm 
(GA) and an artificial neural network (ANN); and (iii) im-
age classification using the neural network. The classifica-
tion results obtained by the GA-based feature selection 
method exhibit the highest accuracy. Qi et al. [176] pro-
posed a new four-component algorithm for land use and 
land cover (LULC) classification. These four components 
are polarimetric decomposition, PolSAR interferometry, 
object-oriented image analysis, and decision tree algorithms. 
First, polarimetric decomposition can be used to support the 
classification of PolSAR data. It is aimed at extracting po-
larimetric parameters related to the physical scattering 
mechanisms of the observed objects. Second, PolSAR in-
terferometry is used to extract polarimetric interferometric 
information to support LULC classification. Third, the main 
purposes of object-oriented image analysis are delineating 
image objects, as well as extracting various textural and 
spatial features from image objects to improve classification 
accuracy. Finally, a decision tree algorithm provides an ef-
ficient way to select features and implement classification. 
The results indicate that the proposed method exhibits much 
better performance than the Wishart supervised classifica-
tion for LULC classification. It indicates that all the four 
components have important contributions to the classifica-
tion. Polarimetric information has significant implications 
for identifying different vegetation types and distinguishing 
between vegetation and urban/built-up. The polarimetric 
interferometric information is important in reducing the 
confusion between urban/built-up and vegetation and that 
between barren/sparsely vegetated land and vegetation. Ob-
ject-oriented image analysis is very helpful in reducing the 
effect of speckle in PolSAR images by implementing classi-
fication based on image objects. The accuracy of the deci-
sion tree algorithm is similar to that of the support vector 
classification. Compared with the nearest neighbor and 
support vector classification, the decision tree algorithm is 
more efficient in selecting features and implementing clas-
sification. Furthermore, the decision tree algorithm can pro-
vide clear classification rules that can be easily interpreted 
based on the physical meaning of the features used in the 
classification.   

5.2.2  Vegetation biomass estimation  

Compared to optical data, SAR has great potential in the 
estimation of vegetation biomass because it can penetrate 
further into vegetations. Therefore it has been a hotspot in 
research. Toan et al. [177] investigated the relationship be-
tween red pine biomass and L and P band backscattering 
coefficients. The most striking observation has been the 
strong correlation of P-band backscatter intensity to forest 
biomass. Dobson et al. [178] examined the dependence of 
radar backscatter on aboveground biomass of mono specie 
conifer forests using polarimetric airborne SAR data at P-, 
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L- and C-bands. Radar backscatter is found to increase ap-
proximately linearly with increasing biomass until it satu-
rates at a biomass level that depends on the radar frequency. 
The biomass saturation level is about 200 tons/ha at P-band 
and 100 tons/ha at L-band, and the C-band backscattering 
coefficient shows much less sensitivity to total aboveground 
biomass. Beaudoin et al. [179] went a step further in the 
understanding of the observations, using theoretical model-
ing applied to calibrated SAR data to explain the radar 
backscatter from the forest canopy under study. The study is 
presented at P band, which was found to be an optimal fre-
quency band for forest observations. It was found that the 
HH return is physically related to both trunk and crown 
biomass, whereas VV and particularly HV returns are 
linked to crown biomass. Rignot et al. [180] found that at 
P-band HV-polarization, the error in predicted biomass is 
about 30% of the actual biomass. Errors obtained using 
L-band data are a few percents larger. These errors are 
caused by uncertainties in actual stand biomass estimates, 
significant inner-stand spatial variations in biomass, unusual 
conditions of forest stands following natural disturbances, 
along with interactions of the radar signals with a complex 
three-dimensional structure of the canopy. Multiple inci-
dence angle data reveal that the incidence angle of the radar 
illumination is also a factor influencing the retrieval of bi-
omass, even at HV-polarization, when it is larger than 50° 
or smaller than 25°. Finally, the radar response of the forest, 
and thereby the regression curves for biomass retrieval, is 
dependent on the seasonal and environmental conditions. 
Harrell et al. [181] examined the relationship between forest 
biomass and C band ERS-1 data and L-band JERS-1 data. 
Results indicate both ERS-1 and JERS-1 backscatter is re-
sponsive to biomass, density, and height, though other fac-
tors, principally surface moisture conditions, often have a 
stronger influence. Sensitivity to forest biomass and struc-
ture appears the greatest when surface moisture conditions 
are minimized as a factor. Biomass correlations with the 
radar backscatter were the strongest in the late winter Im-
agery when all sites had a snow cover, and late summer 
when the surface is mostly dry. ERS-1 data may be more 
sensitive to surface moisture conditions than the JERS-1 
data due to the shorter wavelength of the C-band sensor.  

Imhoff [182] believed that stand level forest canopy 
structure as measured by the size, density, and distribution 
of the stems, branches, and leaves may have a strong effect 
on SAR backscatter. The Michigan Microwave Canopy 
Scattering model (MIMICS) and forest canopy biometric 
data from tropical and subtropical broadleaf forests are used 
to simulate a series of forest stands having equivalent above 
ground biomass while still exhibiting substantial structural 
differences. Results indicate that structure can have a con-
siderable effect on the SAR return for forests with equiva-
lent above-ground biomass. Differences in backscatter of up 
to 18 dB were predicted for some bands and polarizations. 
A forest canopy structural descriptor derived from the vege- 

tation surface area to volume ratio (SA/V), which is a 
measure of structural consolidation, appears to explain the 
differences in backscatter. Kasischke et al. [183] developed 
a method using total stem biomass to estimate the other 
components, with a total stem biomass being estimated 
from the radar image intensity values. Pulliainen et al. [184] 
investigated the seasonal changes of the C-band backscat-
tering properties of boreal forests by applying a semi-  
empirical forest backscattering model and multi-temporal 
ERS-1 SAR data. The results show that the correlation be-
tween the backscattering coefficient and forest stem volume 
(biomass) varies from positive to negative depending on 
canopy and soil moisture. Additionally, the seasonal snow 
cover and soil freezing/thawing effects cause drastic chang-
es in the radar response. Foody et al. [185] related SIR-C 
SAR data to the above-ground biomass of regenerating 
tropical forests in Amazonia, Brazil. C- and L-band SAR 
data in the conventional polarization configurations showed 
no significant relationship with forest biomass. However, 
the strength of the relationships was increased through the 
use of backscatter ratios and stratification of the forests by 
dominant species. They also demonstrate that an ability to 
differentiate between forests of different species composi-
tion, and canopy geometry, increases the strength of the 
relationship between the SAR backscatter and biomass. 
Harrell et al. [186] valuated various techniques for estimat-
ing aboveground woody plant biomass in pine stands found 
in the southeastern United States, using C- and L-band mul-
tiple polarization radar imagery collected by the Shuttle 
Imaging Radar-C (SIR-C) system. The LHV channel is the 
critical element in all the biomass equations. The addition of 
other channels, generally CHV or CHH, significantly im-
proves biomass estimates, whether as a ratio or as additional 
terms in a regression equation. In these researches, the rela-
tionship between forest biomass and SAR data was based 
mainly on the statistical regression between field measure-
ment and SAR signals. As described in the previous sec-
tions, many theoretical models of forest radar backscattering 
have been developed. Considering the accessibility and time 
consuming of field measurement, Ranson et al. [187] ex-
plored the feasibility of forest biomass estimation through 
the combination of forest growth model and 3D radar 
backscattering model. The regression relationship was built 
using simulated biomass and backscattering coefficients. It 
was further calibrated by field measurement. Ranson et al. 
[188] explored the effect of frozen and freezing on SAR 
backscattering. Simple linear regression models relating 
measured above-ground woody biomass to SIR-C 
backscatter were not the same, but statistical tests showed 
that the slopes were not significantly different, suggesting 
that a simple correction by an offset is possible. Besides the 
effect of environmental factors and saturation problems, 
terrain is another import problem in SAR application. It can 
introduce calibration error and change the scattering mech-
anism. Sun et al. [189] simulated the effects of terrain using 
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3D radar backscattering model. A regression model between 
local incidence angle and backscattering was built using 
simulated dataset and applied to the image correction. The 
results showed that the correction can improve the biomass 
estimation accuracy. Kimes et al. [190] used a neural net-
work approach to develop accurate algorithms for inverting 
a complex forest backscatter model. The model combines a 
forest growth model with a radar backscatter model. By 
using the simulated data, various neural networks were 
trained with inputs of different backscatter bands. The net-
works that used only AIRSAR bands (C, L, P) had a high 
degree of accuracy. The inclusion of the X band with the 
AIRSAR bands did not seem to significantly increase the 
accuracy of the networks. In the networks that have only the 
L band or only C band, poor accuracies were obtained. Frate 
et al. [191] also tried the estimation of forest biomass using 
neural network approach and L, P band data. Look Up Ta-
ble (LUT) is also one of the method for the inversion of 
theoretical model. It is mostly applied in optical model. Ni 
et al. [192] investigated the biomass estimation using LUT 
and radar backscattering through the combination of forest 
growth model and 3D radar backscattering model. Two 
types of searching methods i.e., Nearest Distance (ND) and 
Distance Threshold (DT) were elevated. The results showed 
that DT was superior to ND. 

The studies described in previous part are based mainly 
on the radar backscattering. Besides radar backscattering 
coefficients, interferometric SAR coherence is another var-
iable provided by SAR data. It was initially used to evaluate 
the quality of InSAR pairs. Some researchers found that it 
was also correlated with the characteristics of terrain objects. 
Luckman et al. [193] examined the relationship between 
forest biomass and biomass using ERS-1/2 tandem data 
with 44 days time intervals and JERS data with 132 days 
time intervals. The results showed it can obviously provide 
more information about tropical forest. Gaveau [194] simu-
lated the relationship between forest biomass and coherence 
of ERS-1/2 at boreal forest. The results showed that the 
temporal decorrelation is the main decoherence factor. The 
more biomass is the less stable of scatters. Santoro et al. 
[195] develop the water-cloud model into coherent version 
and apply it into the stem volume (biomass=stem volume × 
density factor) estimation. Santoro et al. [196] analyzed the 
correlation of multi-temporal coherence and stem volume 
and found that the coherence of forest covered by snow is 
more stable and suitable for the estimation of forest stem 
volume.       

5.2.3  Retrieval of vegetation height 

Another observation provided by interferometric SAR is the 
InSAR phase. Scientist tried to use the interferometric phase 
information to estimate forest height. Hagberg et al. [197] 
examined the boreal forest height information contained in 
InSAR phase in winter. They believed that four require-
ments are need for the estimation of forest height from In-

SAR data: (1) the wavelength is short enough to guarantee 
that the scattering phase center is near the forest canopy top; 
(2) the ground elevation under forest should be known; (3) 
the baseline should be long enough because the longer base-
line is more sensitive to forest height variation; (4) scatter 
should be stable at wavelength scale to minimize the influ-
ence of temporal decoherence. Pang et al. [198] tried the 
effective forest height estimation using C and L band data 
of SIR-C/X-SAR and found that forest height information is 
contained in the digital elevation model derived from inter-
ferometric SAR data. Different wavelength is preferred for 
different forest stands. The short wavelength is good for 
uniform forest whereas the longer wavelength is better for 
heterogeneous forest. The accuracy of ground elevation can 
be affected by ground control points. The difference be-
tween forest stand and clear cuts is useful for the estimation 
of forest height. These studies are based mainly on single 
polarization. Polarimetric SAR interferometry becomes a 
new technology in the estimation of forest height. Polariza-
tion is sensitive to the shape and directions of scatters. The 
interaction process is different for different polarization. For 
example, cross-polarization mainly comes from forest can-
opy whereas co-polarization mainly comes from ground 
contribution. The combination of polarization and interfer-
ometry provide a new way for the estimation of forest 
height. Cloude et al. [199] proposed the concept of polari-
metric SAR interferometry (PolInSAR). Its main idea is that 
the coherence is first optimized through the polarization 
combination. Then the scattering components coming from 
different part of forest are separated through polarization 
decomposition. Papathanassiou et al. [200] proposed a 
method for the extraction of vegetation vertical structure 
using single baseline PolInSAR data. They supposed that 
the backscattering from forest canopy has no specific polari- 
zation feature. A theoretical model of complex coherence 
was derived from Random volume on Ground (RVOG) for-
est scene. Forest heights are estimated through the iterative 
solution of the model. The parameters needed to be set in 
the model include vegetation height, ground phase, canopy 
attenuation, and the ratio between contributions from 
ground and canopy on each polarization. Therefore its 
computation load is heavy because it in fact is a computa-
tion in six dimensional spaces. Cloude et al. [201] proposed 
a three-step inversion method based on the geometry of the 
RVOG model. The linear fitting over unit circle on complex 
coherence plane accomplished using the least square multi-
ply. The ground phase was estimated using the fitted line. 
The vegetation height and attenuation were estimated final-
ly through Look Up Table method. Yamada et al. [202] in-
troduced the ESPRIT (Estimation of Signal Parameters via 
Rotational Invariance Techniques) into the estimation of 
forest height using PolInSAR data. It improves the compu-
tation efficiency and provides the reliable scattering phase 
from forest canopy [203]. Cloude [204] further proposed 
polarization coherence tomography. Given the vegetation 
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height and ground phase, the vertical profile function of 
vegetation can be constructed through the Legendre-Fourier 
expansion. 

5.2.4  Estimation of Leaf area index 

Leaf area index is one of the key parameters that can be 
estimated using optical image. However, in some special 
areas, it is difficult to acquire optical image due to the cov-
erage of cloud and fogs. Some research tried to estimate 
LAI using SAR data. Paloscia [205] analyzed the sensitivity 
of multi-frequency multi polarization SAR data to crop LAI 
and found that L band data are sensitive to some types of 
crops. Manninen et al. [206] tried to use VV/HH of 
ENVISAT-ASAR to estimate the LAI of boreal forest. The 
results showed that the overall estimation accuracy is 0.27. 
Chen et al. [207] examined the relationship between 
VV/HH of ASAR data and rice LAI using radiative transfer 
model. The estimation accuracy is 0.17.  

6  Conclusions 

With the advances of remote sensing science, remote sens-
ing, especially microwave remote sensing, will play a more 
and more important role in the studies of global water, car-
bon and energy cycles. It is necessary to establish the ob-
servation and inversion platform based on the integration of 
the observations from multiple data sources and optimiza-
tion of different inversion algorithms in order to produce 
long time-series remote sensing products at a higher accu-
racy and spatial resolutions for the study of earth system 
processes. 
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