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Ammonia oxidation is a critical step in the soil nitrogen (N) cycle and can be affected by the application
of mineral fertilizers or organic manure. However, little is known about the rhizosphere effect on the
function and structure of ammonia-oxidizing bacterial (AOB) and archaeal (AOA) communities, the most
important organisms responsible for ammonia oxidation in agricultural ecosystems. Here, the potential
nitrification activity (PNA), population size and composition of AOB and AOA communities in both the
rhizosphere and bulk soil from a long-term (31-year) fertilizer field experiment conducted during two
seasons (wheat and maize) were investigated using the shaken slurry method, quantitative real-time
polymerase chain reaction and denaturing gradient gel electrophoresis. N fertilization greatly
enhanced PNA and AOB abundance, while manure application increased AOA abundance. The commu-
nity structure of AOB exhibited more obvious shifts than that of AOA after long-term fertilization,
resulting in more abundant AOB phylotypes similar to Nitrosospira clusters 3 and 4 in the N-fertilized
treatments. Moreover, PNA was closely correlated with the abundance and community structure of AOB
rather than that of AOA among soils during both seasons, indicating that AOB play an active role in
ammonia oxidation. Conversely, the PNA and population sizes of AOB and AOA were typically higher in
the rhizosphere than the bulk soil, implying a significant rhizosphere effect on ammonia oxidation.
Cluster and redundancy analyses further showed that this rhizosphere effect played a more important
role in shaping AOA community structure than long-term fertilization. Overall, the results indicate that
AOB rather than AOA functionally dominate ammonia oxidation in the calcareous fluvo-aquic soil, and
that rhizosphere effect and fertilization regime play different roles in the activity and community
structures of AOB and AOA.

� 2012 Published by Elsevier Ltd.
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1. Introduction

Microbial ammonia oxidation is the first and rate-limiting step
of the nitrification process and is therefore believed to play a key
role in the global nitrogen cycle by influencing the availability of
fertilizer, nitrogen leaching of NO3

� and NO2
�, and release of N2O and

N2 gas (Kowalchuk and Stephen, 2001). The rhizosphere, which is
the volume of soil adjacent to and affected by plant roots (Sørensen,
1997), plays an active role in plant growth and soil fertility (Rovira,
1969). Because soil microbes are often limited by energy in soils,
root exudates such as organic acids, sugars and amino acids may
stimulate the growth of microbial populations capable of influ-
encing biogeochemical cycling of C, N, P, and S (Fontaine and Barot,
: þ86 10 82106225.
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2005; Rovira, 1969). Fertilization, which is widely used to enhance
soil fertility and crop yield, strongly influences soil biochemical and
biological properties. The effects of fertilization on the activity and
community structure of soil ammonia-oxidizing bacteria (AOB) and
ammonia-oxidizing archaea (AOA), which are ubiquitous in soils
and aquatic environments, has recently been emphasized
(Cavagnaro et al., 2008; Shen et al., 2008; Verhamme et al., 2011;
Wang et al., 2009). However, most investigations have been con-
ducted on a bulk soil scale or in short-term experiments; therefore,
there is still little information available regarding rhizosphere
effects on ammonia oxidation in agricultural soils subject to long-
term fertilization.

Autotrophic AOB have traditionally been considered the exclu-
sive contributors to ammonia oxidation (Prosser, 1990). However,
identification of the key gene responsible for ammonia oxidation
(ammonia monooxygenase, amoA) in Crenarchaeota (Venter et al.,
2004) and the isolation of Nitrosopumilus maritimus (Könneke
ere effect and long-term fertilization in the activity and community
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et al., 2005) demonstrated that archaea also have ammonia-
oxidizing activity (Francis et al., 2007; Zhang et al., 2010b). Never-
theless, comparative genomic analyses indicate that AOB and AOA
may differ greatly in their physiology andmetabolic pathways (Park
et al., 2010; Walker et al., 2010). These differences imply that
environmental factors such as pH, soil nitrogen nutrients, organic C
and plant roots may determine the functional importance of both
guilds in natural environments, especially anthropogenically
disturbed agricultural ecosystems. Jia and Conrad (2009) reported
that changes in the activity of ammonia oxidation were coupled
with the abundance and community pattern of AOB, but not AOA. In
addition, they found that CO2 applied as a carbon source was
mainly assimilated by AOB rather than AOA owing to ammonia
oxidation. The results of this and other studies (Glaser et al., 2010;
Shen et al., 2008; Wu et al., 2011) seem to suggest that bacteria
rather than archaea dominate ammonia oxidation in near-neutral
or alkaline agricultural soils. In contrast, AOA play a more impor-
tant role than AOB in ammonia oxidation in strongly acidic soils
(Yao et al., 2011; Zhang et al., 2011). Phylogenetic analyses of the
16S rRNA sequences of AOB have shown that there are at least
seven distinct clusters within the b-subclass of proteobacteria
(Kowalchuk et al., 2000; Stephen et al., 1996) and that arable soils
are dominated by Nitrosospira of clusters 2, 3 and 4 (Innerebner
et al., 2006; Phillips et al., 2000; Stephen et al., 1996), especially
that of cluster 3, which was nearly ubiquitous in soil environments
that have been investigated to date (Fierer et al., 2009; Glaser et al.,
2010; Shen et al., 2008).

Mineral N fertilizer often leads to a rapid increase in soil
potential nitrification activity (PNA) (Chu et al., 2007), which is
correlated with soil pH and AOB abundance (Shen et al., 2008; Wu
et al., 2011). However, a significant reduction in soil nitrification
and abundance of AOB was observed in a Chinese red upland soil
following long-term application of inorganic N fertilizer. Fan et al.
(2011a) emphasized that the effects of mineral N fertilizer on
ammonia oxidizers in soil vary in response to changes in the soil pH
induced by fertilization. The effects of inorganic and organic
fertilizers on the AOA community are less well studied and appear
to be incongruent (Schauss et al., 2009; Shen et al., 2008; Wang
et al., 2011), which may in part be due to mixotrophic or hetero-
trophic metabolism (Walker et al., 2010). Rice plantations have
a greater effect on the abundance of the amoA gene in the rhizo-
sphere than in the bulk soil, implying a possible rhizosphere effect
on the soil nitrification process (Hussain et al., 2011). In another
study, increases in AOB community size were commonly stronger
in bulk soil than in the rhizosphere following application of
[NH4]2SO4. Glaser et al. (2010) suggested that there was fierce
competition among plants, nitrifiers and other N-assimilating
microorganisms for NH4eN in the rhizosphere. Moreover,
suppression of soil nitrification has been found to occur naturally in
the rhizosphere via nitrification inhibitors produced by plants
(Subbarao et al., 2006, 2007). In the same experimental field tested
in this study, rhizosphere effects played an important role in
mediation of the degree to which long-term fertilization affects the
soil microbial community and extracellular enzyme activities (Ai
et al., 2012). However, the specific effects of these factors on the
nitrification activity and AOB and AOA communities remain
unclear.

Long-term field fertilization experiments may provide profound
insight into how anthropogenic disturbances lead to changes in soil
properties such as pH, organic C, NH4

þ�N and NO3
��N, which in

turn influence the function and structure of AOA and AOB
communities. The present study was conducted to examine the
differences in nitrification activity and AOB and AOA communities
between rhizosphere and bulk soil, and how each responds to long-
term fertilizations (31-year) during two seasons (wheat andmaize).
Please cite this article in press as: Ai, C., et al., Different roles of rhizosph
structure of ammonia oxidizers in a calcareous fluvo-aquic soil,
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Quantitative real-time polymerase chain reaction (PCR) and dena-
turing gradient gel electrophoresis (DGGE) were used to estimate
AOB and AOA abundance and community structure, respectively.
We hypothesized that rhizosphere and bulk soils would have
different ammonia oxidizer communities with distinct nitrification
activities after long-term fertilization, and that rhizosphere effects
would mediate the influence of fertilization on the function and
structure of soil AOB and AOA communities.

2. Material and methods

2.1. Field design and sampling

A long-term field fertilizer experiment was initiated in 1979 at
Malan Farm (37�550N, 115�130E), Hebei Province, China, where
wheat-maize rotation is the common cropping system. This region
has a temperate and monsoonal type climate with an annual
average temperature and precipitation of 12.6 �C and 490 mm,
respectively. The experimental field contains calcareous fluvo-
aquic soil, which is widespread in the North China Plain. At the
beginning of the experiment, the soil had a pH (H2O) of 7.8, 1.1%
organic matter, 1.8 g kg�1 total N, and 5.0 and 87.0 mg kg�1 of
available P and K, respectively. Six treatments (three replicates
each) were implemented in 18 plots (12 m � 6.7 m) under a rota-
tion of winter wheat (Triticum aestivum L.) and summer maize (Zea
mays L.) (Ai et al., 2012). Treatments consisted of soil without
fertilizer (control, CK), fertilizer N (N), fertilizer N and P (NP),
fertilizer N, P and K (NPK), organicmanure (M), and organicmanure
plus fertilizer N, P and K (MNPK). For NPK treatment, fertilizer N, P
and K were applied in the form of urea (300 kg N ha�1 per year),
superphosphate (150 kg P2O5 ha�1 per year) and potassium chlo-
ride (150 kg K2O ha�1 per year), respectively, while no PK or K was
applied for the N and NP treatments, respectively. All fertilizer P
and K and Manure were applied once as basal dressing during
wheat season. Manure and mineral fertilizers were evenly broad-
cast onto the soil surface and immediately incorporated into the
plowed soil (0�20 cm depth) by tillage before sowing. For the N
fertilizer, 20% of the urea was used as a basal dressing before
sowing wheat, 30% was top-dressed at the reviving stage of wheat,
and 50% was top-dressed at the 10-leaf stage of maize. The organic
manure (3.75 � 104 kg ha�1) consisted of straw bedding impreg-
nated with liquid and solid horse manure, which had 120 g kg�1

organic matter, 5.0 and 2.2 g kg�1 total N and P, respectively, and
about 50% water content.

Soil samples were collected during the reproductive stages of
wheat and maize in early May 2010 and late August 2010, respec-
tively, when the rhizosphere effects tend to be most pronounced
(Cheng et al., 2003). Rhizosphere soil was operationally defined as
soil adhering to the total roots after gentle shaking, while bulk soil
was defined as unvegetated soil adjacent to the plants. The whole
plant with their roots was extracted from soil and, after shaking off
the loosely adhering soil, the tightly adhering soil (i.e. rhizosphere
soil) was carefully collected. The unvegetated soil cores (5 cm
diameter) adjacent to the plants (i.e. bulk soil) were sampled at
depth 0�20 cm. In order to obtain the enough rhizosphere soil for
multiple assays, twenty plants were randomly selected from each
plot, and these rhizosphere soils were pooled to form one
composite sample. Correspondingly, one composite bulk soil con-
sisting of twenty cores was taken from each plot. Thus, six
composite samples of each treatment were collected per sampling
time, and a total of 72 composite samples were taken for two
consecutive seasons. The fresh samples were placed immediately
on ice and transported to the laboratory. Plant roots were removed
by passing the sample through a 2-mm mesh sieve, and aliquots of
the samples were then stored at room temperature until chemical
ere effect and long-term fertilization in the activity and community
Soil Biology & Biochemistry (2012), http://dx.doi.org/10.1016/
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analysis, at 4 �C until PNA analysis (within 1 week), or at �20 �C
until molecular analysis.

2.2. Chemical analysis

Soil pH was measured with a compound electrode (PE-10, Sar-
torious, Germany) using a soil to water ratio of 1:2.5. Soil organic C
was determined by dichromate oxidation, while total N was
measured using a vario MACRO cube element analyzer (Elementar
Analysensysteme GmbH, Hanau, Germany). The ammonium N
(NH4

þeN) and nitrate N (NO3
�eN) contents were determined by

extracting the soil with 0.01 M CaCl2 solution (1:10, w/v) for 30 min
and then determining the NH4

þ and NO3
� concentrations using

a flow injection autoanalyzer (FLA star 5000 Analyzer, Foss,
Denmark).

2.3. Slurry assay of potential nitrification activity

The PNA was determined via the shaken slurry method
described by Hart et al. (1994), which evaluates the maximum
nitrate production rate of a soil sample. Briefly, fresh soil samples
(15 g) were placed in Erlenmeyer flasks with 100 ml of a 1.5 mM
NH4

þ and 1mMPO4
3�mixturewith the pH adjusted to 7.2. The slurry

was then shaken on an orbital shaker at 180 rpm for 24 h at 25 �C to
maintain aeration in the dark. Aliquots of 5 ml were subsequently
removed using a wide-mouth pipette at 2, 6, 12, 22 and 24 h after
the start of the incubation. The aliquots were then centrifuged, and
the supernatant was filtered and stored at�20 �C until analysis. The
NO3

�eN concentrations were measured using a flow injection
autoanalyzer (FLA star 5000 Analyzer, Foss, Denmark), after which
PNA was calculated from the rate of linear regression of nitrate
concentrations over time (mg NO3

�eN g�1 h�1).

2.4. DNA extraction, PCR amplification and DGGE analysis

Soil total DNA was extracted using a Fast DNA SPIN Kit for soil
(MP Biomedicals, Illkirch, France) according to the manufacturer’s
instructions. DNA was finally eluted with 100 ml of the DNA elution
solution included in the kit. Successful DNA extraction was char-
acterized by electrophoresis on 0.7% (wt/vol) agarose gels.

To amplify specific 16S rRNA of AOB from soils for DGGE, nested
PCR was performed (Zhang et al., 2010a). The first PCR was con-
ducted using the AOB-specific primer pair CTO189f and CTO654r,
which amplified a 465-bp fragment (Kowalchuk et al., 1997). The
product from this round of PCR was then used as the template DNA
for a second round of PCR carried out using universal primers
(F338-GC and R518) (Muyzer et al., 1993). AOA amoA genes were
amplified using primers CrenamoA23f and CrenamoA616r (Tourna
et al., 2008). PCR mixtures consisted of 12.5 ml 2 � EasyTaq PCR
SuperMix (TransGen Biotech, Beijing, China), 0.5 mM of each primer
and 1 ml of 10-fold diluted DNA template diluted to a final volume of
25 ml. PCR reactions were performed on a MyCycler Thermal Cycler
(Bio-Rad) as previously described for AOB (Zhang et al., 2010a) and
AOA (Tourna et al., 2008). All PCR products were electrophoresed
on 1.5% (wt/vol) agarose to verify their size and quality.

The PCR amplicons were separated by DGGE using a D-Code
universal mutation detection system (Bio-Rad, USA) according
to the manufacturer’s instructions. Briefly, 20 ml of each PCR
product was loaded onto an 8% (wt/vol) polyacrylamide gel
(acrylamide:bisacrylamide ¼ 37.5:1) with a denaturant gradient of
35%e60% for AOB and 20%e50% for AOA (100% denaturant contains
7 M urea and 40% deionized formamide). Electrophoresis was then
conducted at 60 �C in 1� tris-acetate-EDTA buffer at 75 V for 16 h.
After DGGE, the gels were stained with 1:10,000 SYBR green I for
30 min and then scanned with a Bio-Rad image scanner. Band
Please cite this article in press as: Ai, C., et al., Different roles of rhizosph
structure of ammonia oxidizers in a calcareous fluvo-aquic soil,
j.soilbio.2012.08.003
intensity and position data were analyzed using Quantity One (Bio-
Rad, USA).

2.5. Cloning, sequencing and phylogenetic analysis

Prominent bands in the DGGE gels were excised and reamplified.
For AOA, the purified PCR products were directly sequenced by
Sangong Biotech Co., Ltd. (Shanghai, China). Whereas, the purified
PCR products of AOBDGGEbandswere cloned into the pGM-T vector
(Tiangen Biotech, Beijing, China) and transformed into Escherichia
coli TOP10 (Tiangen Biotech, Beijing, China). The Plasmids of positive
colonies were extracted and sequenced. The sequences of the DGGE
bands were then compared with those available in the National
Center for Biotechnology Information (NCBI) GenBank database
using the BLAST algorithm. The nucleotides generated in this study
and obtained from the NCBI GenBank database were aligned, and
a phylogenetic treewas constructed by the neighbor-joiningmethod
using Kimura 2-parameter distance, as implemented in MEGA
version 4.0 (Tamura et al., 2007). Bootstrap support (>50%) from
1000 replications is shown at the nodes of the trees.

2.6. Quantitative real-time PCR

Real-time quantification of AOB 16S rRNA in soil samples was
performed using primers CTO189f and RT1r and the TaqMan Probe
TMP1, as described by Hermansson and Lindgren (2001). The PCR
mixture was prepared in a total volume of 20 ml using a Premix Ex
Taq� Kit (Perfect Real Time) (TaKaRa, Dalian, China), 0.3 mMof each
primer (CTO189f and RT1r), 0.2 mM Taq Man probe TMP1, and 1 ml
10-fold diluted extracted DNA. For the amoA in the AOA, the 20 ml
PCR mixture contained 10 ml of SYBR Green I PCR Mix (TaKaRa,
Dalian, China), 0.2 mM each primer (CrenamoA23f and Cren-
amoA616r) and 1 ml 10-fold diluted extracted DNA. Quantitative
real-time PCR for AOB and AOA was carried out in triplicate using
an ABI 7500 Real-Time PCR System (Applied Biosystems) under the
following thermocycling conditions: 30 s at 95 �C, followed by 40
cycles of 5 s at 95 �C and 34 s at 60 �C. The amplification specificity
of AOA was confirmed by generating a melting curve. Standard
curves ranging from 1 �102 to 1 �107 copies were prepared by 10-
fold serial dilution of known copy numbers of plasmid DNA pos-
sessing the genes of interest. To estimate the population sizes, it
was assumed that AOB contains one copy of 16S rRNA per cell (Coci
et al., 2010) and AOA carries one copy of the amoA gene per cell
(Agogué et al., 2008; Hallam et al., 2006).

2.7. Statistical analysis

Statistical analyses were performed using SAS version 8.1. For
each variable measured in the rhizosphere or bulk soil, the data
were analyzed by one-way ANOVA using Fisher’s least significant
difference (P ¼ 0.05) to compare the treatment means. Two-way
ANOVA was used to compare the soil fractions (rhizosphere and
bulk soil) and fertilizer treatments. Pearson’s correlation analyses
were performed to assess the relationships among PNA, soil
properties and the abundances of AOB and AOA. Redundancy
analysis (RDA) with the Monte Carlo permutation’s test (499
permutations) was carried out to determine if the AOB and AOA
community structures were correlated with PNA and soil proper-
ties, as implemented in Canono for Windows version 4.5.

2.8. Nucleotide sequence accession numbers

The sequences obtained from the DGGE bands in this studywere
deposited in the GenBank database under accession numbers
JQ904470 to JQ904529.
ere effect and long-term fertilization in the activity and community
Soil Biology & Biochemistry (2012), http://dx.doi.org/10.1016/



Table 2
Two-way ANOVA of soil biological properties in two soil fractions (rhizosphere and
bulk soil) and six fertilizer treatments with three replicates each (n ¼ 36) during
wheat season and maize season.

Soil fractions
(rhizosphere or bulk)

Fertilizer
treatments

Soil fractions
� fertilizer treatments

F P F P F P

Wheat season
PNAa 521.53 <0.0001 86.36 <0.0001 8.13 0.0002
AOB population

size
69.12 <0.0001 17.26 <0.0001 4.54 0.0054

AOA population
size

3.50 0.0448 40.13 <0.0001 7.85 0.0002

Maize season
PNA 23.63 <0.0001 8.01 0.0002 0.86 0.5243b

AOB population
size

88.10 <0.0001 5.69 0.0016 4.76 0.0042

AOA population
size

96.19 <0.0001 45.17 <0.0001 0.60 0.7036

a PNA, potential nitrification activity.
b No significant effects (p > 0.05) are highlighted in bold.
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3. Results

3.1. Soil chemical properties and potential nitrification activity

Soil pH values, which were significantly lower in the rhizo-
sphere than in bulk soil (Two-way ANOVA, P < 0.0001), were not
significantly affected by the long-term fertilizer treatments, except
for the M and MNPK treatments during maize season, which
induced a slight decrease in soil pH (Table 1). Soil organic C, total N
and NH4

þeN tended to be greater in the rhizosphere than in bulk
soil, and increased in response to long-term organic fertilization (M
and MNPK) during both seasons. In contrast, during wheat season,
the NO3

�eN concentrations in bulk soil, which were generally
higher than in the rhizosphere, were markedly enhanced in the N,
NP, NPK and MNPK treatments. This trend was not observed during
maize season, when the NO3

�eN concentrations increased mark-
edly in response to organic fertilization and the rhizosphere effect.

The rhizosphere and fertilizer regimes had strong effects on the
soil PNA during both the wheat and maize season (Table 2). The
PNA ranged from 0.87 to 3.08 mg NO3

�eN g�1 h�1, and was typically
higher in the rhizosphere than in bulk soil in all treatments (Fig. 1),
indicating a typical rhizosphere effect. Additionally, PNA in the
rhizosphere and the bulk soil showed a significant positive corre-
lation during wheat season (r ¼ 0.917, n ¼ 6, p < 0.05) and maize
season (r ¼ 0.807, n ¼ 6, p ¼ 0.05). Overall, the PNA showed similar
responses to the fertilization regimes during both seasons. Specif-
ically, the PNA was 31%e95% higher in the N, NP, NPK and MNPK
treatments than in the control (CK) in both the rhizosphere and
bulk soil. Although the PNA in the M treatments was also
enhanced, the degree of increase ranged from 4% to 39% was
obviously lower than those in the mineral N fertilizer treatments.

3.2. Population sizes of ammonia-oxidizing bacteria and archaea

Weused quantitative real-time PCR to determine the population
sizes of AOB and AOA. The total AOB, which ranged from 1.9� 107 to
37.0 � 107 cells g�1 soil (Fig. 2a and b), was 13%e778% higher in the
rhizosphere than in bulk soil during both seasons. In the bulk soil
collected during wheat season, the abundance of AOB in the N,
NP, NPK and MNPK treatments were 2.0, 2.4, 5.1 and 1.6 times
Table 1
Soil pH and nutrient concentrations after long-term fertilization in the rhizosphere and
n ¼ 3. Different letters indicate significant differences among fertilizer treatments at p <

Treatments CK N N

Wheat seasona

pH Bulk soil 8.26 � 0.04 a 8.22 � 0.03 a
Rhizosphere 8.08 � 0.03 a 8.09 � 0.08 a

Total N (g kg�1) Bulk soil 1.45 � 0.12 b 1.45 � 0.04 b
Rhizosphere 1.76 � 0.12 c 1.65 � 0.01 c

Organic C (g kg�1) Bulk soil 9.54 � 0.67 b 9.74 � 0.68 b
Rhizosphere 11.03 � 0.74 b 10.56 � 0.78 b 1

NH4
þeN (mg kg�1) Bulk soil 1.66 � 0.28 c 1.55 � 0.89 c

Rhizosphere 3.27 � 1.04 bc 1.93 � 0.53 c
NO3

�eN (mg kg�1) Bulk soil 10.52 � 2.95 bc 23.13 � 3.85 a 1
Rhizosphere 10.42 � 3.06 bc 15.19 � 0.48 a

Maize season
pH Bulk soil 8.27 � 0.02 a 8.22 � 0.05 ab

Rhizosphere 8.03 � 0.04 a 8.06 � 0.04 a
Total N (g kg�1) Bulk soil 1.42 � 0.09 c 1.42 � 0.07 c

Rhizosphere 1.54 � 0.03 c 1.56 � 0.07 c
Organic C (g kg�1) Bulk soil 9.59 � 0.34 b 9.40 � 0.66 b

Rhizosphere 11.13 � 1.09 b 11.31 � 0.82 b 1
NH4

þeN (mg kg�1) Bulk soil 1.88 � 0.05 ab 1.23 � 0.93 bc
Rhizosphere 3.45 � 0.53 a 3.39 � 1.06 a

NO3
�eN (mg kg�1) Bulk soil 6.93 � 1.73 b 8.71 � 1.90 b

Rhizosphere 13.95 � 7.25 a 11.05 � 5.23 a 1

a Wheat season data from Ai et al. (2012).
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that of the control, respectively (Fig. 2a). However, the abundance
of AOB in treatment M was 43% lower than that of CK. A similar
trend was observed in the rhizosphere; however, the levels of AOB
in the M treatment also significantly increased when compared
with CK. A significant positive correlation was observed between
the abundance of AOB during both seasons (r ¼ 0.783, n ¼ 12,
p < 0.01) (Fig. 2a and b).

AOA abundance ranged from 43.9 � 107 to 160.5 � 107 cells g�1

soil across treatments (Fig. 2c and d). The rhizosphere effects and
fertilizer treatments also both had strong effects on AOA abundance
(Table 2). In contrast to AOB, the AOA abundance was primarily
enhanced by organic fertilization (M and MNPK). Correlation
analyses also confirmed that the AOA population size was signifi-
cantly positively related to soil organic C and total N during both
seasons (Table 3), which were greatly increased by long-term
organic fertilization (Table 1). Moreover, there was a significant
positive correlation between PNA and AOB abundance, whereas no
relationship was observed between PNA and AOA abundance
(Table 3).
bulk soil during two seasons (wheat and maize season). Data are the means � S.E.,
0.05.

P NPK M MNPK

8.25 � 0.12 a 8.23 � 0.05 a 8.26 � 0.04 a 8.10 � 0.14 a
8.14 � 0.06 a 8.10 � 0.02 a 8.05 � 0.06 a 8.12 � 0.02 a
1.54 � 0.07 b 1.44 � 0.10 b 1.89 � 0.12 a 1.95 � 0.15 a
1.76 � 0.05 c 1.83 � 0.07 c 2.54 � 0.15 b 2.75 � 0.13 a
9.57 � 0.64 b 9.77 � 0.39 b 11.84 � 0.94 a 11.9 � 0.32 a
0.64 � 0.33 b 10.76 � 0.25 b 15.11 � 0.82 a 15.01 � 1.1 a
1.99 � 0.63 bc 3.24 � 0.54 ab 4.07 � 0.43 a 3.73 � 1.06 a
2.54 � 0.75 c 2.48 � 1.25 c 5.53 � 1.25 ab 6.34 � 0.44 a
7.28 � 4.94 ab 14.03 � 5.80 bc 7.21 � 2.73 c 16.84 � 5.92 ab
7.71 � 1.85 bcd 7.49 � 1.24 cd 6.19 � 0.97 d 11.73 � 3.67 ab

8.23 � 0.03 ab 8.21 � 0.01 ab 8.08 � 0.07 bc 7.94 � 0.18 c
8.00 � 0.03 a 8.02 � 0.04 a 7.92 � 0.03 b 7.79 � 0.07 c
1.37 � 0.04 c 1.43 � 0.01 c 1.75 � 0.06 b 1.89 � 0.09 a
1.62 � 0.06 c 1.57 � 0.05 c 2.18 � 0.10 b 2.33 � 0.14 a
9.38 � 0.17 b 9.55 � 0.24 b 12.02 � 0.90 a 12.62 � 0.02 a
2.03 � 0.53 b 11.67 � 0.58 b 17.5 � 0.21 a 18.20 � 1.15 a
0.72 � 0.21 c 1.14 � 0.23 bc 2.28 � 0.45 a 2.3 � 0.25 a
0.55 � 0.13 b 1.09 � 0.83 b 2.83 � 0.47 a 3.84 � 1.53 a
9.97 � 1.84 b 8.62 � 1.42 b 41.51 � 16.65 a 53.23 � 31.40 a
1.81 � 5.43 a 11.81 � 6.16 a 15.03 � 7.66 a 18.49 � 9.34 a

ere effect and long-term fertilization in the activity and community
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Fig. 1. Potential nitrification activity (PNA) in the rhizosphere and bulk soil under different fertilization treatments. (a)Wheat, PNA during wheat season; (b)Maize, PNA duringmaize
season. Vertical bars represent the standard deviations (n¼ 3) and different letters indicate significant differences among fertilizer treatments in the rhizosphere or bulk soil at P< 0.05.
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3.3. Community structure of ammonia-oxidizing bacteria and
archaea

The community structures of AOA and AOB in soils were char-
acterized by DGGE. The analysis of replicates for each treatment
Fig. 2. Abundance of soil ammonia-oxidizing bacteria (AOB) and archaea (AOA) in the rhiz
wheat season; (b) AOB-M, AOB during maize season; (c) AOA-W, AOA during wheat season;
(n ¼ 3) and different letters indicate significant differences among fertilizer treatments in th
that AOB contains one copy of 16S rRNA per cell and AOA carries one copy of the amoA ge

Please cite this article in press as: Ai, C., et al., Different roles of rhizosph
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showed good reproducibility of the DGGE banding patterns (data
not shown); therefore, the results for only one replicate are shown
here (Figs. 3 and 4). During wheat season, mineral N-fertilized
treatments (N, NP, NPK and MNPK) in both the rhizosphere and
bulk soil resulted in increased numbers of AOB bands in the DGGE
osphere and bulk soil under different fertilization treatments. (a) AOB-W, AOB during
(d) AOA-M, AOA during maize season. Vertical bars represent the standard deviations
e rhizosphere or bulk soil at P < 0.05. To estimate the population sizes, it was assumed
ne per cell.
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Table 3
Correlations of soil properties, potential nitrification activity (PNA), and abundance
of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA).

pH Organic C Total N NH4
þeN NO3

�eN AOA AOB

Wheat season
AOB �0.460 0.280 0.356 0.268 �0.188 0.262 e

AOA �0.096 0.666*a 0.679* 0.705* �0.408 e 0.262
PNA �0.604* 0.348 0.450 0.276 �0.284 0.360 0.870**b

Maize season
AOB �0.541 0.349 0.263 �0.014 �0.099 0.433 e

AOA �0.925** 0.929** 0.933** 0.512 0.457 e 0.433
PNA �0.528 0.282 0.231 �0.030 �0.041 0.418 0.731**

a Correlation is significant at the 0.05 level.
b Correlation is significant at the 0.01 level.
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profile. Specifically, bands 3, 11 and 13 were added when compared
with the CK andM treatments (Fig. 3a). These findings indicate that
inorganic fertilizer and organic manure had a variety of effects on
the soil AOB community. These results were confirmed by Cluster
analysis, which revealed that mineral N-fertilized treatments were
clearly separate from CK and M treatments (Fig. 3b), whereas no
distinct difference was observed between the rhizosphere and bulk
soil. A similar variation in the AOB community structure as
observed during wheat season was detected during maize season
among fertilization regimes (Fig. 3c and d). These findings indicate
that the fertilization regime might be a major factor affecting the
soil AOB community structure, while the rhizosphere exerted
a secondary effect. In contrast to the AOB community, the DGGE
profiles of AOA remained largely unchanged for most treatments
(Fig. 4). Subtle alterations in the DGGE patterns were detected;
however, these were observed between the rhizosphere and bulk
soil. For example, the intensities of DGGE band 10 during wheat
season (Fig. 4a) and band 7 during maize season (Fig. 4c) appeared
higher in the bulk soil than the rhizosphere. Additionally, cluster
analysis revealed two major clusters during both seasons, one
encompassing patterns derived from almost all rhizosphere
samples and another encompassing those from all bulk soil
samples (Fig. 4b and d).

The numbered bands in the DGGE profiles were sequenced for
phylogenetic analysis. Our definition of the phylogenetic cluster of
the 16S rRNA gene in AOB was primarily based on previous studies
(Kowalchuk et al., 2000; Stephen et al., 1996). The AOB DGGE
profiles corresponding to all treatment groups were dominated by
bands 15e17 and 19 (wheat season) and bands 13e16 (maize
season), which were affiliated with the Nitrosospira cluster 3
lineage (Fig. 5). Interestingly, a high intensity band 11 observed
during wheat season, which was only detected in the N-fertilized
treatments, fell within the Nitrosospira cluster 4 lineage. Moreover,
some bands (3, 4, 7 and 8 during wheat season and 2e5 and 7
during maize wheat season) that were affiliated with
Nitrosomonas cluster 6 were also found in the soil samples;
however, they were only detected in the region of DGGE profiles
with a low denaturing gradient (Fig. 3). For AOA, 25 DGGE bands
corresponding to the archaea amoA gene were sequenced. Phylo-
genetic analysis showed that most DGGE bands belonged to the soil
and sediment lineage, while four were associated with the water
and sediment lineage (Fig. 6).

3.4. Correlations of soil properties with community structures of
ammonia-oxidizing bacteria and archaea

RDA was conducted to determine the correlation of soil prop-
erties with community structures of AOB and AOA (Fig. 7). During
wheat season, the first and second axes accounted for 27.3% and
17.6% of the total variation in AOB community structure,
Please cite this article in press as: Ai, C., et al., Different roles of rhizosph
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respectively (Fig. 7a). PNA (F ¼ 2.100, r ¼ 0.158, p ¼ 0.026), NO3
�eN

content (F ¼ 2.073, r ¼ 0.139, p ¼ 0.018) and NH4
þeN content

(F ¼ 1.996, r ¼ 0.166, p ¼ 0.032) were significantly correlated with
AOB structure. During maize season, PNA (F ¼ 1.845, r ¼ 0.136,
p ¼ 0.048) and total N (F ¼ 2.776, r ¼ 0.217, p ¼ 0.012) were
significantly correlated with the AOB community structure
(Fig. 7b). No other investigated soil properties were correlated with
the AOB community structure.

In contrast, significant correlations were observed between the
AOA community structure and soil pH (F ¼ 2.004, r ¼ 0.167,
p ¼ 0.012), NO3

�eN content (F ¼ 2.051, r ¼ 0.127, p ¼ 0.022) and
organic C content (F ¼ 1.880, r ¼ 0.144, p ¼ 0.046) during wheat
season, and with soil pH (F ¼ 2.251, r ¼ 0.184, p ¼ 0.006), total N
content (F ¼ 2.535, r ¼ 0.179, p ¼ 0.002) and NO3

�eN content
(F¼ 2.062, r¼ 0.131, p¼ 0.042) during maize season (Fig. 7c and d).

4. Discussion

Our results consistently showed that the abundance of AOAwas
greater than that of AOB in both the rhizosphere and bulk soil,
confirming previous reports by Leininger et al. (2006) and Chen
et al. (2008). However, the community structure and abundance
of AOB were significantly correlated with PNA, while those of AOA
were not (Table 3, Fig. 7), suggesting that nitrification is primarily
driven by AOB in the calcareous fluvo-aquic soil tested in this study.
The predominance of bacterial nitrification is consistent with
previous reports for a grassland soil in New Zealand (Di et al., 2009)
and an agricultural soil in Germany (Jia and Conrad, 2009), but
inconsistent with reports for most acidic soils (Gubry-Rangin et al.,
2010; Yao et al., 2011; Zhang et al., 2011). Evolutionary consider-
ations suggest that archaea can be well adapted to extreme
conditions, such as highly acidic pH and low ammonia availability
(Frijlink et al., 1992; Verhamme et al., 2011), while the opposite
responses are detected for bacteria (Nicol et al., 2008). These
characteristics may explain why AOB but not AOA play an impor-
tant role in soil nitrification in this calcareous soil (pH from 7.79 to
8.27) (Table 1) following long-term fertilization.

The rhizosphere effect has been shown to have a strong effect on
microbial activities including N transformation processes (Ai et al.,
2012; Herman et al., 2006; Kirk and Kronzucker, 2005). In this
study, the rhizosphere and bulk soil differed with respect to most
soil characteristics (Table 1) and possessed distinct PNAs, which
were typically higher in the rhizosphere than the bulk soil (Fig. 1),
implying a profound rhizosphere effect on ammonia oxidation. It is
well known that the microenvironments in the rhizosphere differ
markedly from those in bulk soil owing to interactions among root
exudations, plant absorption and rhizosphere microorganisms
(Neumann and Römheld, 2002; Sørensen, 1997). The higher
resource heterogeneity of rhizodeposition after mineralization may
provide a substrate for ammonia oxidizers and stimulate microbial
growth (Chen et al., 2008; Malchair et al., 2010). Indeed, this
positive impact was confirmed by the fact that AOB and AOA
population sizes in the rhizosphere increased equally by approxi-
mately 147% and 32%, respectively, when compared with bulk soil
(Fig. 2). The predominance of ammonia oxidizers in the rhizosphere
is also consistent with previous observations of two paddy soils in
China and a cauliflower-planted soil in Germany (Chen et al., 2008;
Hussain et al., 2011; Kleineidam et al., 2011). Apparently, the
potential existence of natural inhibitors of nitrification (i.e. alle-
lochemicals such as monoterpenes and low-molecular-weight
organic acids released by roots) (Subbarao et al., 2007; White,
1994) cannot dramatically impact the predominance of microbial
nitrification in the rhizosphere. Although nitrifiers DGGE profiles
were dominated by some common bands during both seasons
(Figs. 3 and 4), indicating that plant species did not substantially
ere effect and long-term fertilization in the activity and community
Soil Biology & Biochemistry (2012), http://dx.doi.org/10.1016/



Fig. 3. DGGE analysis of soil ammonia-oxidizing bacteria (AOB) during wheat season (a) and maize season (c) after different fertilization treatments, and similarity dendrograms
(UPGMA, Dice coefficient of similarity) of AOB banding patterns calculated from DGGE patterns obtained during wheat season (b) and maize season (d). Arrows indicate DGGE
bands for sequencing. R- and B- indicate rhizosphere and bulk soil, respectively.
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alter the community structure of ammonia nitrifiers (Fan et al.,
2011b), the subtle differences in AOB DGGE patterns between
wheat and maize season were also detected. For example, AOB
DGGE pattern of rhizosphere soil in MNPK treatment during wheat
season was clearly separated from that of other treatment, but
which did not happen during maize season (Fig. 3). C3 and C4 plant
species are usually different from each other in the quality and
quantity of root exudates (Kuzyakov, 2002). Some studies indicated
that more carbon is released as respiration from the roots of wheat
than from those of maize (Liljeroth et al., 1994). Thus, the different
patterns of organic-N mineralization and distributions of N source
between two seasons possibly contribute to the partial changes of
Please cite this article in press as: Ai, C., et al., Different roles of rhizosph
structure of ammonia oxidizers in a calcareous fluvo-aquic soil,
j.soilbio.2012.08.003
AOB community composition. In addition, soil nitrification and
ammonia oxidizers are frequently influenced by the seasonal
factors. Temperature has been regarded as one of the most
important environmental factor responsible for microbial nitrifi-
cation (Avrahami and Conrad, 2003; Fierer et al., 2009).

Long-term applications of different fertilizers had a significant
impact on the soil nitrification process (Table 2), and AOB and AOA
responded to fertilizers in different manners (Figs. 2e4). N fertilizer
selectively stimulated the growth of AOB in both the rhizosphere
and bulk soil, as indicated by an average increase in AOB abundance
of 33% in the N-fertilized treatments (N, NP, NPK and MNPK) when
compared with CK (Fig. 2). Meanwhile, PNA was significantly
ere effect and long-term fertilization in the activity and community
Soil Biology & Biochemistry (2012), http://dx.doi.org/10.1016/



Fig. 4. DGGE analysis of soil ammonia-oxidizing archaea (AOA) during wheat season (a) and maize season (c) after different fertilization treatments, and similarity dendrograms
(UPGMA, Dice coefficient of similarity) of AOA banding patterns calculated from DGGE patterns obtained during wheat season (b) and maize season (d). Arrows indicate DGGE
bands for sequencing. R- and B- indicate rhizosphere and bulk soil, respectively.
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correlated with AOB abundance (Table 3). This N-induced stimu-
lation of AOB is consistent with previous observations in an alkaline
sandy loam (Chu et al., 2008; Shen et al., 2008) and a paddy soil
(Wu et al., 2011), where soil pH is not strongly affected by appli-
cation of N fertilizer; however, it is inconsistent with the results
observed for a Chinese upland red soil in which acidification
occurred in response to N-fertilized treatments (He et al., 2007). In
this study, the pH of calcareous soil was not drastically impacted by
N fertilizer (Table 1), possibly owing to strong carbonate buffering
(Glaser et al., 2010). Soil pH is known to have a considerable effect
on the activities of AOB and other microbial processes that they
mediate (Frijlink et al., 1992). Nicol et al. (2008) reported that
Please cite this article in press as: Ai, C., et al., Different roles of rhizosph
structure of ammonia oxidizers in a calcareous fluvo-aquic soil,
j.soilbio.2012.08.003
bacterial amoA gene copies showed no obvious trend with
decreasing soil pH, while their transcript numbers were typically
decreased. This sensitivity of AOB to decreasing pH can be attrib-
uted to the dependence of monooxygenase on NH3, which would
be ionized exponentially to NH4

þ with decreasing pH (De Boer and
Kowalchuk, 2001). When compared with AOB, the abundance of
AOA was selectively enhanced by organic manure (Fig. 2). Highly
labile soil organic matter, such as straw and root exudates, may
stimulate growth of the AOA community (Chen et al., 2008;Wessén
et al., 2010). Positive correlations between AOA abundance and
organic C and total N were also observed in the present study
(Table 3). These findings further support the idea that AOA have
ere effect and long-term fertilization in the activity and community
Soil Biology & Biochemistry (2012), http://dx.doi.org/10.1016/



Fig. 5. Neighbor-joining tree with Kimura 2-parameter substitution of partial 16S rRNA gene sequences of AOB retrieved from the DGGE bands in this study and from the NCBI
GenBank database. Bootstrap values (>50%) are indicated at branch points. The scale bar represents 1% sequence divergence. Sample sequences from this study are depicted by open
(wheat season) and closed (maize season) circles.
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Fig. 6. Neighbor-joining tree with Kimura 2-parameter substitution of archaeal amoA gene sequences retrieved from the DGGE bands in this study and from the NCBI GenBank
database. Bootstrap values (>50%) are indicated at branch points. The scale bar represents 1% sequence divergence. Sample sequences from this study are depicted by open (wheat
season) and closed (maize season) circles.
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alternative growth strategies for mixotrophic or heterotrophic
growth (Walker et al., 2010).

DGGE analysis revealed that the community structure of AOB
wasmore sensitive to various fertilization regimes than that of AOA
(Figs. 3 and 4). The differences in the AOB community structure
among treatments were correlated with the soil nitrogen level
(NH4

þeN and NO3
�eN) and PNA during wheat season (Fig. 7a).

Cluster analysis also clearly demonstrated that mineral N-fertilized
treatments were clearly separated from CK andmanure treatments,
whereas most paired-samples (bulk soil and rhizosphere) clustered
together (Fig. 3b and d). Thus, at this site, the increased nitrification
function could primarily be ascribed to the availability of substrate
(NH3) derived from inorganic N fertilizer, while the rhizosphere
Please cite this article in press as: Ai, C., et al., Different roles of rhizosph
structure of ammonia oxidizers in a calcareous fluvo-aquic soil,
j.soilbio.2012.08.003
effect on AOB community structure was secondary. Long-term
applications of N fertilizers often result in increased diversity of
AOB communities (Fig. 3), especially within clades affiliated with
Nitrosospira cluster 3 (Chu et al., 2007; Shen et al., 2008; Wu et al.,
2011). Interestingly, in this study, we detected a strong DGGE band
affiliated with Nitrosospira cluster 4, which was found almost
exclusively in N-fertilized treatments. Avrahami and Conrad (2003)
speculated that Nitrosospira cluster 4 is restricted in cold temper-
atures because it is commonly detected in temperate soils.
However, in a recent study, Nitrosospira cluster 4 was also found in
a subtropical paddy soil after long-term fertilization (Wu et al.,
2011), implying wide ecological diversity within this lineage.
Although Nitrosospira sp. dominates the AOB community in arable
ere effect and long-term fertilization in the activity and community
Soil Biology & Biochemistry (2012), http://dx.doi.org/10.1016/



Fig. 7. Correlations of soil properties with community structure of ammonia-oxidizing bacteria (AOB) during wheat season (a) and maize season (b), and with community structure
of ammonia-oxidizing archaea (AOA) during wheat season (c) and maize season (d) as determined by redundancy analysis (RDA). R- (filled triangle) and B- (open circles) represent
rhizosphere and bulk soil, respectively.
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soil (Fig. 5) (Innerebner et al., 2006; Phillips et al., 2000; Stephen
et al., 1996), Nitrosomonas-like sequences were also present in
this study (Figs. 3 and 5). This finding is in contrast to the results of
some previous studies in which only Nitrosospira sp. were detected
(He et al., 2007; Wu et al., 2011). Nitrosomonas-like lineages have
been observed in manure-treated soil (Fan et al., 2011a), organic
matter-rich wastewater (Zhang et al., 2010a) and alkaline calcar-
eous soil (Shen et al., 2008), which provides further evidence of
their preference for high-ammonia and high-pH environments
(Kowalchuk and Stephen, 2001).

Despite the AOA community structure being less susceptible to
long-term fertilization and not significantly relative to PNA,
significant correlations between the AOA community structure and
soil pH, organic C, total N and NO3

��N were still observed during
both seasons (Fig. 7c and d). Custer analysis also showed that the
AOA communities in the rhizosphere were clearly separated from
those in the bulk soil, indicating that rhizosphere effect plays
a more important role in shaping the AOA community than long-
term fertilization in the fluvo-aquic soil investigated in this study.
The decreasing pH (Yao et al., 2011) and abundant root exudates
(Herrmann et al., 2008) in the rhizosphere could greatly favor the
growth of AOA. These results are supported by the observation that
Please cite this article in press as: Ai, C., et al., Different roles of rhizosph
structure of ammonia oxidizers in a calcareous fluvo-aquic soil,
j.soilbio.2012.08.003
AOA abundance was negatively correlated with pH (Nicol et al.,
2008), but positively correlated with organic C and total N
(Table 3). Chen et al. (2008) reported that the AOA community
could be particularly responsive to carbon dioxide and oxygen
released by rice roots into the rhizosphere. It should be noted that
the potential nitrification activity in current study was determined
by the shaken slurry method of Hart et al. (1994), which involves
adjustment of the liquid medium pH to 7.2. This adjustment
possibly changes the actual activity of indigenous communities in
soils with different pH values. Recent studies demonstrated that
measurement of potential nitrification of acidic soils without
adjusting pH produced similar trends but significantly lower rates
compared to the results with adjusting pH (Xue et al., 2009; Yao
et al., 2011). Furthermore, PNR represents the NH3 oxidation
activity in soil incubated with an NH4

þ substrate within 24 h, during
which the activity of cultured AOA isolates could be hardly
observed in media even under optimal conditions (Könneke et al.,
2005; Park et al., 2010). Thus, the PNR assay possibly introduced
a bias toward the positive correlation between PNR and the
abundant of AOB rather than that of AOA (Wu et al., 2011). Never-
theless, we cannot exclude the possibility that AOA might have
contributed to soil nitrification and other microbial processes, even
ere effect and long-term fertilization in the activity and community
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though PNA was significantly correlated with the community
structure and abundance of AOB rather than AOA in this study,
because the specific metabolic traits, lifestyles and ecological
functions of AOA in complex terrestrial ecosystems are still unclear
(Glaser et al., 2010).
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5. Conclusions

The results of this study demonstrated that rhizosphere effect
and fertilization regimes play different effects in the activity and
community structure of AOB and AOA in fluvo-aquic soil. Long-
term (31-year) applications of N fertilizers increased the PNA and
AOB population size and diversity, whereas organic manure
significantly enhanced the AOA population size. The high sensi-
tivity of the AOB community to fertilization regimes, as well as the
significant correlations between PNA and the abundance and
community structure of AOB, but not those of AOA, suggested that
ammonia oxidation is mainly driven by AOB in this calcareous soil.
The PNA and population sizes of AOB and AOAwere typically higher
in the rhizosphere than bulk soil, indicating a profound rhizosphere
effect on ammonia oxidation. Rhizosphere effect, which usually
leads to high organic matter content and decreasing pH, played an
important role in shaping the AOA community. However, the
ecological functions of AOA in this calcareous fluvo-aquic soil are
still unknown.
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