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Estimation of Atmospheric Profiles From
Hyperspectral Infrared IASI Sensor

Hua Wu, Li Ni, Ning Wang, Yonggang Qian, Bo-Hui Tang, and Zhao-Liang Li

Abstract—A physics-based regression algorithm was developed
and applied to the Infrared Atmospheric Sounding Interferom-
eter (IASI) observations to estimate atmospheric temperature and
humidity profiles. The proposed algorithm utilized three steps to
solve the ill-posed problems and to stabilize the solution in a fast
speed regression manner: 1) a set of optimal channels was selected
to decrease the effect of forward model errors or uncertainties of
trace gases; 2) the principal component analysis technique was
used to reduce the number of unknowns; 3) a ridge regression pro-
cedure was introduced to improve the ill-conditioned problem and
to lessen the influence of correlation. To determine the optimal co-
efficients of the algorithm, a simulated dataset was generated with
the spectral emissivities and atmospheric profiles fully covering all
the possible situations for clear sky conditions. Then, the accuracy
of the algorithm was evaluated against with both simulated and
actual IASI data. The root mean squared error (RMSE) of atmo-
spheric temperature profile for the simulated data is about 1.5 K
in troposphere and stratosphere and is close to 4 K near the sur-
face with no biases. The RMSE of atmospheric humidity profile
for the simulated data is about 0.001-0.003 g/g at low altitude. Al-
though the retrieval accuracy for the actual IASI data is not as
good as those for the simulated data, the vertical distribution of at-
mospheric profiles can be well captured. Those results showed that
the proposed algorithm is promising when the profile bias errors
could be removed.

Index Terms—Atmospheric humidity profile, atmospheric tem-
perature profile, hyperspectral thermal infrared, IASI, inverse
problems, remote sensing.

I. INTRODUCTION

HE atmospheric temperature and humidity profiles are of
great importance in climate research, and weather predic-
tion among others, and will clearly continue to be important
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for the foreseeable future [1]. How to accurately retrieve at-
mospheric profiles from space has attracted more attentions in
recent years. However, the accuracy of retrieval is generally
limited due to the coupling of land surface and atmosphere
[2]-[6]. This problem makes the accurate retrieval of atmo-
spheric profiles need land surface temperature and emissivity
as a priori knowledge, and vice versa [7], [8]. Furthermore,
the low vertical resolution of traditional multispectral sensors
degrades the retrieval accuracy because each channel of these
sensors receives energy emitted from a thick layer of the at-
mosphere. In addition, the discrepancy between the scales of
remote sensed observations and those of radiosonde measure-
ments brings troubles for the validations of the retrieved atmo-
spheric profiles [9].

Recently, the hyperspectral infrared sensors, such as At-
mospheric InfraRed Sounder (AIRS), Infrared Atmospheric
Sounding Interferometer (IASI), and Cross-track Infrared
Sounder (CrlS), have been equipped on polar orbiting plat-
forms. Each of these sensors has thousands of channels for a
single field of view. It brings hope that land surface temper-
ature/emissivity and atmospheric profiles can be accurately
retrieved with an improved vertical resolution from these
sensors [10]. However, the retrieval in fact is still an ill-posed
problem [2]. The number of unknowns is always larger than
that of measurements. The key is to reduce the number of
unknowns or increase the number of equations to make the
problem deterministic. To date, various attempts from empirical
to physical methods to extract the atmospheric profiles from
space have been proposed [1], [2], [7], [8], [11]-[13]. The
computational expense of physically based methods has gen-
erally made empirically based methods attractive when facing
mass hyperspectral data [2]. However, advances in technology
will allow computationally intensive physical methods to be
implemented and attract more focus in the near future.

To estimate the atmospheric profiles as accurately as pos-
sible and provide first-guesses for a subsequent study of phys-
ical method to synthetically retrieve both land surface and at-
mospheric parameters, a physics-based regression algorithm for
hyperspectral infrared IASI data was proposed to retrieve at-
mospheric profiles under clear sky conditions by using a set of
optimal channels and by introducing principal components and
a ridge regression. Section II is devoted to describe the theory
basis for atmospheric profiles retrieval from space and to give
the solution of regression coefficients in eigenvector domain.
Section III will describes the data used for this study. Section IV
gives some evaluation results against with both the simulated
data and the actual in situ radiosonde data. Finally, conclusions
are summarized in the last section.
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1486

II. METHODOLOGY

A. Radiative Transfer Equation

An infrared sensor onboard a satellite viewing Earth’s sur-
face measures the radiance emitted from Earth and its atmos-
phere along the line of sight. Assuming a cloud-free atmos-
phere under local thermodynamic equilibrium and neglecting
the atmospheric scattering effects, the radiative transfer equa-
tion (RTE) in the infrared region can be written as:

R(v,6) = (v, ) B(v, T.) (0,0, p.)

s I7r(v, 8, p)
— | B, 1) Ry
/0 (0. 1) dp 24
Ds OT* (1 ’0’
+(1_5(u,9))/0 B(U,Tp)%)”)dmm
(1)

where I? is the spectral radiance measured at the top of the at-
mosphere (TOA) with wavenumber v and viewing zenith angle
6. For simplicity, the wavenumber and viewing zenith angle are
ignored in the following expressions. ¢ is the effective land sur-
face emissivity. B is the Planck function of the temperature. 7T
and 7}, are land surface and atmospheric temperature, respec-
tively. 7 is the transmittance from the pressure level p to the
TOA along the viewing angle. 7*(v, 8, p) is the reflected trans-
mittance from surface p; to the pressure level p. The subscript s
denotes surface values. 12’ is the reflected solar radiation, which
can be ignored in the longwave infrared window region. The
first term of (1) at the right hand represents surface emission to
space. The second term is the upwelling radiance contributed
from atmosphere to space. The third term denotes the atmo-
spheric downwelling emissive radiance reflected by the surface
to space.

Equation (1) may be approximated in the numerical pertur-
bation form by using the first order variation [2]:

6Tg = Wr 0T, + Wcbe

_|_/ I'}VT(STde‘i‘/ W, . 0lng.dp, (2)
Jo 0

where the perturbation ¢ is with respect to an a priori mean con-
dition. T’z is a brightness temperature vector. Wr,, W, Wr,,,
and W, are the weighting functions of land surface tempera-
ture (1), surface emissivity (¢), atmospheric temperature (7},),
and water vapor (gw), respectively. Consequently, (1) can be
linearized to perturbations of 7%, ¢, T}, and gw by introducing
a background mean condition.
Equation (2) can be simplified in its matrix form as:

§Tp = Kéx 3)

where the weighting function matrices K is the linear or tangent
model of the forward radiative transfer model and can be calcu-
lated by a differential scheme or analytical method [2], [14]. The
perturbation matrices 6z are the perturbed unknowns related to
the land surface and atmospheric profiles.
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B. Solution in the Eigenvector Domain

Obviously, (3) still presents an ill-posed problem. The
number of unknowns is larger than that of equations. To reduce
the uncertainties in the solution and take advantage of spectral
correlations, the atmospheric temperature and humidity profiles
as well as the emissivity spectra can be represented by their
eigenvectors, making only a few unknowns, i.e., coefficients
of eigenvectors, need to be solved in the retrieval. Therefore,
it greatly reduces the number of unknowns to the same order
as that of equations. In the eigenvector domain the perturbation
matrix can be written as:

M

br = Z fivi =V, “4)
i=1

where v; is the ith eigenvector, f; is the associated coefficient,
and M is the number of eigenvectors used. V and f are the
corresponding eigenvector matrix and coefficient vector. In the
eigenvector domain, (3) becomes:

§Tg = Kbz =KV f=KJ. (5)

Because of the high correlation within the equations, the ob-
servation errors may have a great effect on the retrieval accu-
racy. To reduce this effect, a ridge regression is introduced to
stabilize the solution and to obtain reliable regression coeffi-
cients at the expense of losing small accuracies and biasing es-
timate [15]. Therefore, the solution of regression coefficients in
(5) can be given by:

f=(K"K+r)'K76Tp , (6)

where 7 is the ridge parameter and 7 is the identity matrix.
Small positive values of r will improve the conditioning of the
problem. The coefficients can be used to establish the relation-
ship between the perturbation of brightness temperature and that
of the unknown parameters of interest with respect to the back-
ground mean condition. Once these coefficients are known, the
parameters of interest departure from the a priori mean condi-
tion can be estimated from (4).

C. Selection of a Subset of Channels

Because of the huge volume of data, the forward model er-
rors, as well as the uncertainties about trace gases, a channel
selection procedure should be implemented to make the total
loss of information be a minimum and the retrieval accuracy
be less affected by the errors or uncertainties. Collard [16] ad-
vised that the shortwave channels (A <= 5 um) can be affected
by sunlight and should not be chosen in preference to longwave
channels that can provide similar information. In addition, chan-
nels should be avoided if they are sensitive to elements not in
the radiative transfer model, or are sensitive to variable species
whose variability is not considered in the background or in the
retrieval; or have known radiative transfer weaknesses [16]. In
the end, 226 channels out of 8461 spectral channels of IASI as
shown by Fig. 1 for atmospheric profile retrieval were optimally
selected as that proposed by Collard [16] from 650 cm ™! to
1600 cm 1.
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Fig. 1. The locations of selected channels for the atmospheric profile retrieval.
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Fig. 2. The spectral variation of the selected land surface emissivities of soil, vegetation, and water/sea/ice.

1. DATA

A. The Database of Spectral Emissivities and Atmospheric
Profiles

To simulate the radiances at TOA representing a worldwide
set of atmospheric situations and land surface types and to de-
termine the regression coefficients, the Advanced Spaceborne
Thermal Emission Reflection Radiometer (ASTER) spectral li-
brary and thermodynamic initial guess retrieval (TIGR) data-
base were used.

The ASTER spectral library includes data from three other
spectral libraries: the Johns Hopkins University (JHU) Spec-
tral Library, the Jet Propulsion Laboratory (JPL) Spectral Li-

brary, and the United States Geological Survey (USGS) Spec-
tral Library. It is a compilation of more than 2300 spectra of
materials, including minerals, rocks, soils, vegetation, lunar and
manmade materials, covering the wavelength range 0.4-15.4
p#m [17]. The spectra of main materials (soils, vegetation, water,
and snow/ice) of the terrestrial ecosystem, including 52 soil
types, 4 vegetation types, 9 water/snow/ice types, were chosen
to develop the algorithm in this study in Fig. 2.

The TIGR atmospheric profiles constructed by the Labora-
toire de Meteorologie Dynamique (LMD) represent a world-
wide set of atmospheric situations from polar to tropical at-
mosphere. TIGR contains 2311 atmospheric temperature, hu-
midity and ozone mixing ratio profiles selected from a collec-
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Fig. 3. The histogram of selected atmospheric quantities. (a) the bottom atmospheric temperature, (b) the total precipitable water of profiles.

tion of more than 150,000 radiosonde measurements around the
world with total precipitable water (TPW) ranging from 0.1 to
8.0 g/cm?. TIGR supplies these profiles in 40 pressure levels
from 0.05 to 1013 hPa. These profiles are grouped into five air-
mass types, including 872 profiles in tropical airmass, 388 in
mid-latitude-1, 354 in mid-latitude-2, 104 in polar-1 and 593 in
polar-2. Since the final objective is to synthetically retrieve the
land surface and the atmospheric parameters in the near future,
only atmospheric profiles in clear sky are taken into account
here. Consequently, a profile selection procedure was performed
to choose the cloud-free atmospheric situations. In this proce-
dure, the profiles with relative humidity at any layer greater than
90% or at two consecutive layers greater than 85% were con-
sidered to be cloudy [18]. Moreover, a subset of the remained
profiles was further elaborately selected to insure that there was
a nearly uniform probability distribution for TPW. At last, 196
atmospheric profiles, with the bottom atmospheric temperature
(T,) varying between 220 K and 320 K and TPW nearly equally
distributed between 0-6.5 g/cm? were extracted from TIGR in
Fig. 3.

B. Hyperspectral Infrared IASI Data and Corresponding
Radiosonde Observations

The hyperspectral infrared IASI data are used to evaluate the
proposed method in this paper. IASI is one of the key payloads
on MetOp-A which was successfully on orbit on October 19th,
2006. IASI is a kind of Fourier transform spectrometer with
8461 spectral channels covering a spectral range from 645 to
2760 cm™?! (3.6-15.5 pum). The spectral resolution is 0.5 cm™*
(full width at half maximum) after apodisation. The spectral
sampling interval is 0.25 cm~!. IASI is an across track scanning
system with scan range of £48°20’, symmetrically with respect
to the nadir direction. Each scan line contains 30 scan positions
towards the Earth and two calibration views. At each scan po-
sition, the effective field of view (EFOV) consists of a 2 x 2
matrix of instantaneous fields of view (IFOV) with a diameter
of 14.65 mrad, corresponding to a ground spatial resolution of
about 12 km at nadir with a satellite altitude of 819 km. A series
of IASI data can be found and downloaded from the European
Organization for the Exploitation of Meteorological Satellites
(EUMETSAT) net site (http://www.eumetsat.int). In this work,

the level 1C products with the observed radiances were used in
the evaluation of the proposed regression algorithm. The IASI
Level 1C products provide us the geo-located, calibrated, re-
sampled and apodised radiance spectra.

Radiosondes carried by balloons can be used to measure and
simultaneously transmit recorded data, which includes pressure,
temperatures and humidity. Balloons generally can reach alti-
tudes as high as 30 km prior to bursting, about 90 minutes after
launch. Horizontal distances traveled by the balloon may ex-
ceed 200 km, but this varies significantly depending on the na-
ture of winds in the upper atmosphere. Radiosonde observations
usually are taken twice daily at 00:00 hours and 12:00 hours at
Universal Time Coordinated (UTC). Atmospheric data from the
radiosonde are interpreted at the launching station and have en-
tered into a worldwide communications network. Current and
old radiosonde observations from nearly 686 stations around
the world can be found at the University of Wyoming website
(http://weather.uwyo.edu/upperair/sounding.html).

Because the evaluation of the proposed method requires the
time and location matching pairs of IASI data and radiosonde
observations, a two-line element set (TLE) of MetOp-A, which
describes the orbits of Earth-orbiting satellites, was used to track
the location of the nadir of satellite, and to match the radiosonde
data. Taking into account the fact that there are often no corre-
sponding radiosonde data at UTC 12:00 for unclear reasons, the
UTC 00:00 are set as the reference time to search the corre-
sponding pairs of IASI data and radiosonde observations. Fig. 4
showed the distribution of radiosonde stations around world and
the traces of the nadir of IASI at UTC 00:00 in 2009 and 2010,
respectively.

It is obvious that most matching places are fallen into the
ocean. To fully evaluate the proposed algorithm in the land,
Australia was selected as the study area as shown in Fig. 5.

Finally, 62 scenes of IASI data in 2009 and 51 scenes in
2010, which fly overpass the radiosonde stations at UTC 00:00,
were filter out according to the strict matching rule of data ac-
quisition-time. Excluding quasi-cloud-contaminated scenes, 22
scenes in 2009 and 18 scenes in 2010 were selected with simul-
taneous atmospheric profiles from the radiosonde stations in our
evaluation study. The acquisition dates of selected IASI data
were uniformly distributed from January to December in 2009
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Fig. 4. Tllustration of the distribution of radiosonde stations around world and the traces of the nadir of IASI at UTC 00:00 in 2009 and 2010. The red circles are
the locations of radiosonde stations, while the blue and green circles are the traces in 2009 and 2010, respectively.

and 2010. The traces for the nadirs of those IASI data were also
shown in Fig. 5.

IV. RESULTS

A. Determination of Regression Coefficients

To determine the regression coefficients from (6), the use of
simulated data rather than actual measurements is more advis-
able due to the difficulty in collecting the synchronous measure-
ments. Taking this reason into account, the selected land surface
emissivities and atmospheric profiles as well as the hyperspec-
tral atmospheric radiative transfer model 4A/OP (Operational
Release for Automatized Atmospheric Absorption Atlas) [19]
were used to simulate the radiance at TOA for IASI. The simu-
lated data were then used to get the regression coefficients, and
to evaluate the algorithm accuracies. The spectral range of the
simulation was spanning from 650 to 1600 cm~*!, with spec-
tral resolution about 0.5 cm ™~ and sampling interval about 0.25
cm™! similar to the configuration of IASI. The noise equiva-
lent temperature differences (NEAT) of the IASI were adopted
from that of Aires [20]. To make the simulation more represen-
tatives, the reasonable variations of LST were varied in a wide
range according to 7, of the atmospheric profiles used. That is,
LST varied from T, — 5 K to T,, + 15 K in steps of 5 K for
T, — 290 K and from 7, — 5 K to T, + 5 K in steps of 5 K
for T, < 290 K [21]. Taking into account the angular depen-
dence of TOA radiance, nine different viewing zenith angles
(VZAs) (0°, 24.62°, 33.56°, 39.72°, 44.42°, 48.19°, 51.32°,
56.25°, 60°) were used in simulations. In total, 531700 different
situations were obtained for each VZA. Finally, the regression
coefficients f were obtained directly through (6). Due to the
small intervals of VZAs used in simulations, the regression co-
efficients for other VZAs were linearly interpolated in function
of the secant VZA.

B. Evaluation With the Simulated IASI Data

The final retrieved results with the simulated IASI data, which
are the same as those in determination of regression coefficients,
were shown in the following figures.

Fig. 6 shows the bias and the standard deviation of the re-
trieved atmospheric profiles for the simulated IASI data with
531700 different situations at VZA 0°. Obviously, both atmo-
spheric temperature and humidity profiles at different altitude
are estimated with no biases. The standard deviations are larger
at the bottom of atmosphere and they decrease with increasing
altitude until reaching to a fix value at certain pressure.

Fig. 7 shows the root mean square errors (RMSEs) of the re-
trieved atmospheric profiles for the simulated IASI data. From
this figure, we can see that the RMSE of temperature profile is
about 1.5 K in troposphere and stratosphere and is close to 4 K
near the surface. It can also be found that the errors of tempera-
ture profile kept nearly invariable along with the altitude except
for that near the surface. The probable reasons are: 1) the ac-
curacies at the bottom of atmosphere may be degraded by the
couple of land-atmosphere; 2) the selected channels are more
sensitive to the atmosphere in the middle and upper of tropo-
sphere, which means those channels can well detect the tem-
perature profiles at different altitudes in a vertical atmospheric
column especially beyond 700 hPa. Meanwhile, the accuracies
of the proposed algorithm could be improved by introducing
more atmospheric windows or combining with the Advanced
Microwave Sounding Unit (AMSU) observation to increase the
channels in which the peak of the weighting functions locates
near the surface. The RMSE of atmospheric humidity profile
is about 0.001-0.003 g/g at low altitude. Those errors decrease
greatly along with the altitude beyond the troposphere.

The retrieval results at other VZAs will not be shown here for
their similar performances.
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C. Evaluation With the Actual IASI Data

In this work, the proposed algorithm was also carried out with
the selected scenes of IASI data. The retrieved atmospheric pro-
files were compared with the in situ radiosonde observations.

To demonstrate the performance of the algorithm, two cases
out of eighteen scenes, one for summer and the other for winter,
are selected and shown in Fig. 8. Both the retrieved tempera-
ture and water vapor mixing ratio profiles have good agreements
with the radiosonde measurements especially at the middle and
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upper troposphere. The vertical distribution of atmospheric pro-

files can be well captured by the proposed algorithm.

To fully evaluate the proposed algorithm, the statistics for the

eighteen actual IASI data in 2010 are shown in Fig. 9.
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Fig. 10. The RMSE:s of the retrieved atmospheric profiles for the actual IASI data in 2010. The dashed is the RMSEs before bias correction. The solid is the
RMSEs after bias correction using the estimated biases from historical data of 2009. (a) For temperature profile; (b) for humidity profile.

Different from Fig. 6, there are obvious biases for both the
atmospheric temperature and humidity profiles for actual IASI
data. The biases for the temperature profiles changes from —5
K to 2 K. Meanwhile, the biases for the humidity profile are al-
ways negative within about —0.002 g/g. Those biases may be
caused by several factors. The possible reasons are: 1) the re-
mained forward errors in the radiative transfer model; 2) the un-
resolved errors in the sensor calibrations; and 3) the uncertain-
ties about other trace gases when determining the regression co-
efficients, such as carbon monoxide or methane. These factors

will make the proposed algorithm have the system bias errors,
which implies that an on-orbit calibration for both measure-
ments and forward RTM or a post calibration for atmospheric
profiles may be required. Thanks to the availability of matchup
data in 2009 for the same region, those system bias errors can
be estimated directly from those historic data by comparing the
differences between the estimated and actual atmospheric pro-
files. Consequently, those estimated biases were used to remove
the system bias errors in 2010. The standard deviation of the
retrieved atmospheric profiles for the actual IASI data is nearly
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similar to, at most not more 1.5 times than that for the simulated
IASI data.

Fig. 10 shows the RMSEs of the retrieved atmospheric pro-
files for the actual IASI data before and after correcting for bias
errors. The RMSEs decrease along with the altitude for both
temperature and humidity profiles. The maximum RMSEs be-
fore bias correction are about 6 K and 0.004 g/g for temperature
and humidity profiles, respectively. However, the RMSEs can
decrease to 2 K in troposphere and stratosphere and 3—5 K near
the surface after bias correction. Although the retrieval accuracy
for the actual IASI data is not as good as those for the simulated
data, the proposed algorithm can be also thought as promising
if the profile bias errors could be well removed.

V. CONCLUSIONS

In this work, a physics-based regression algorithm has been
proposed to retrieve the atmospheric temperature and humidity
profiles with three steps, including a selection of optimal chan-
nels, a principal component analysis, and a ridge regression
procedure. Taking into account the difficulty of collecting the
synchronous measurements, different combinations of ASTER
Spectral Library and TIGR database were used to simulate var-
ious possible situations, and to determine the regression coeffi-
cients from the perturbation of brightness temperature to that of
the atmospheric profiles.

To fully evaluate the proposed algorithm, both the simulated
and actual IASI data were used to determine the accuracy of
the proposed algorithm. The results with simulated data showed
that the proposed algorithm is unbiased for various land surface
and atmospheric conditions and be of robustness and speedi-
ness. The RMSEs of temperature profile are about 1.5 K in tro-
posphere and stratosphere and close to 4 K near the surface. The
worse accuracy near the surface may be caused by the couple of
land-atmosphere and the selection channels. The RMSEs of hu-
midity profile are about 0.001-0.003 g/g at low altitude and de-
creases greatly along with the altitude beyond the troposphere.
Although the results with actual data are not as good as those for
the simulated data, the vertical distribution of atmospheric pro-
files can be well captured. There are obvious biases for both the
atmospheric temperature and humidity profiles, which may be
resulted by the remained forward errors in the radiative transfer
model, the unresolved errors in the sensor calibrations or the
uncertainties about other trace gases. The standard deviation of
the retrieved atmospheric profiles for the actual IASI data is
not more 1.5 times than that for the simulated IASI data. For-
tunately, these biases errors could be easily corrected through
algorithm calibration. The RMSEs of temperature and humidity
profile for the actual data become nearly the same as those for
the simulated data after bias correction. The RMSEs of temper-
ature profile decrease to 2 K in troposphere and stratosphere and
3-5 K near the surface.

In conclusion, the proposed algorithm is promising for the
reasons of well characterization of vertical distribution of pro-
files and the possibility of removing biases. Nevertheless, more
works should be done. How to quickly select more synchronous
data to make the evaluation results become more confident, how
to combine with the AMSU to well sound the near surface, and
how to integrate with physical methods to improve the accura-
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cies of retrieved atmospheric profiles will be studied in the near
future.
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