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Land surface soil moisture (SSM) is crucial to research and applications in hydrology,
ecology, and meteorology. To develop a SSM retrieval model for bare soil, an elliptical
relationship between diurnal cycles of land surface temperature (LST) and net surface
shortwave radiation (NSSR) is described and further verified using data that were
simulated with the Common Land Model (CoLM) simulation. In addition, with a
stepwise linear regression, a multi-linear model is developed to retrieve daily average
SSM in terms of the ellipse parameters x0 (horizontal coordinate of the ellipse centre),
y0 (vertical coordinate of the ellipse centre), a (semi-major axis), and θ (rotation angle),
which were acquired from the elliptical relationship. The retrieval model for daily
average SSM proved to be independent of soil type for a given atmospheric condition.
Compared with the simulated daily average SSM, the proposed model was found to be
of higher accuracy. For eight cloud-free days, the root mean square error (RMSE)
ranged from 0.003 to 0.031 m3 m−3, while the coefficient of determination (R2) ranged
from 0.852 to 0.999. Finally, comparison and validation were conducted using simu-
lated and measured data, respectively. The results indicated that the proposed model
showed better accuracy than a recently reported model using simulated data. A simple
calibration decreased RMSE from 0.088 m3 m−3 to 0.051 m3 m−3 at Bondville
Companion site, and from 0.126 m3 m−3 to 0.071 m3 m−3 at the Bondville site.
Coefficients of determination R2 = 0.548 and 0.445 were achieved between the
estimated daily average SSM and the measured values at the two sites, respectively.
This paper suggests a promising avenue for retrieving regional SSM using LST and
NSSR derived from geostationary satellites in future developments.

1. Introduction

Land surface soil moisture (SSM) content is crucial to research and applications in
hydrology, ecology, and meteorology (Saha 1995; Pierdicca, Pulvirenti, and Bignami
2010). In hydrology, SSM strongly influences the transfer of water between the soil
surface and the atmosphere, and it affects the water balance between the local and regional
scale (Mintz and Serafini 1992; Entekhabi and Rodriquez-Iturbe 1994; Gokmen et al.
2012). In ecology, SSM is an essential parameter for various models and has a major
effect on net ecosystem productivity (NEP) estimates and yield forecasts (Krishnan et al.
2006; Qian, Jong, and Gameda 2009). In climatological research, SSM is considered as a
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significant variable that can affect climate change at regional or even global scales (Szép,
Mika, and Dunkel 2005; Seneviratne et al. 2010).

In the recent decades of rapid development in remote-sensing technology, many
optical remote-sensing methods have been introduced to estimate SSM or SSM-related
surface variables (Verstraeten et al. 2006; Song and Zhao 2006; Minacapilli, Iovino, and
Blanda 2009; Patel et al. 2009; Li et al. 2009; Chen et al. 2011; Li, Tang, et al. 2013; Li,
Wu, et al. 2013). However, most of these methods were originally developed with polar-
orbiting remotely sensed data, including data from the Moderate Resolution Imaging
Spectroradiometer (MODIS) and Advanced Very High Resolution Radiometer
(AVHRR), and only limited (usually one or two) instantaneous remotely sensed images
are available for a given study area over a clear-sky day using those polar-orbiting
satellites, which does not benefit the long-term monitoring of SSM time series. In
comparison, geostationary satellite data are used less in SSM retrieval methods, mainly
because of their lower spatial resolution in comparison with polar-orbiting satellite data.
However, they are capable of observing the Earth with a much higher temporal resolution
(48–96 per day) with the same view angle for a given pixel. With the characteristic of
stationary observation from space, geostationary satellite data are not only providing land
surface information that is closely related with SSM, such as land-surface temperature
(LST) and net surface shortwave radiation (NSSR), but are also capable of describing their
daily evolution. Thus, they are likely to be more promising for mapping and monitoring
SSM time series than polar-orbiting remotely sensed data. According to previous studies
(Schmugge et al. 1978; Price 1977, 1980; Xue and Cracknell 1995; Wetzel, Atlas, and
Woodward 1984; Wetzel and Woodward 1987; Zhao and Li 2013; Song et al. 2013), both
multi-temporal field data and satellite-derived land-surface variables have been employed
to estimate SSM. At the very beginning, the amplitude of the diurnal range of soil surface
temperature was considered as a reliable indicator of soil moisture conditions (Schmugge
et al. 1978). In addition, other SSM indicators for bare or sparsely vegetated areas, such as
thermal inertia and apparent thermal inertia (ATI), have been calculated based on tem-
perature variation (Price 1977, 1980). Consequently, a simplified thermal inertia model
was proposed that incorporates the phase angle and the time of maximum air temperature
in the diurnal temperature cycle (Xue and Cracknell 1995). However, the relationship
between ATI and SSM varies with soil type. In addition to acquiring multiple surface
temperature measurements, researchers have suggested combining surface temperature
and the variation in absorbed solar radiation to estimate SSM, and the mid-morning
difference between the surface temperature and the absorbed solar radiation has been
discovered to be optimally sensitive to SSM (Wetzel, Atlas, and Woodward 1984; Wetzel
and Woodward 1987). On this basis, Zhao and Li (2013) proposed a simple multi-linear
model to estimate SSM with TN (the LST increasing rate normalized by the difference in
the net surface shortwave radiation at 1.5 hours and 4.5 hours after sunrise at mid-
morning) and tm (the time at which the daily maximum temperature occurs). Applying
this method is limited by the ability to determine tm and the nonlinear relationship
between TN and SSM. Therefore, Zhao et al. (2013) modified Zhao and Li’s (2013)
SSM retrieval model and verified it using field measurements.

In summary, for optical and thermal infrared remote sensing, most of the previous
SSM retrieval studies focus on only a single daily measurement or on the mid-morning
thermal infrared and optical data (Verstraeten et al. 2006; Song and Zhao 2006;
Minacapilli, Iovino, and Blanda 2009; Patel et al. 2009; Chen et al. 2011; Wetzel,
Atlas, and Woodward 1984; Wetzel and Woodward 1987; Zhao and Li 2013; Zhao
et al. 2013). However, all-day optical and thermal infrared data are capable of providing
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additional information about the underlying surface, which will probably improve SSM
retrieval. This paper attempts the synergistic use of daytime thermal infrared and optical
data to develop a novel and feasible retrieval model for daily average SSM, where the
diurnal cycles of LST and NSSR are used. This model has significant potential for future
development, given the attention that geostationary satellite-derived land-surface variables
have recently been accorded (Sobrino and Romaguera 2004; Jiang, Li, and Nerry 2006;
Tang et al. 2008; Lu et al. 2011; Song et al. 2013).

2. Methodology

2.1. Elliptical relationship between diurnal LST and NSSR cycles

The diurnal LST cycle can usually be described as a sine or cosine function. Based on the
Diurnal Temperature Cycle (DTC) model proposed by Göttsche and Olesen (2001), Jiang,
Li, and Nerry (2006) presented a modified DTC model. The daytime part of the DTC
model can be written as:

T tð Þ ¼ T0 þ Ta cos β t � tmð Þ½ �; (1)

where T(t) is the LST (K) at time t (hours), T0 is the residual temperature at sunrise, Ta is
the temperature amplitude, β is the width of the half-period of the cosine term, and tm is
the time at which the temperature reaches its maximum.

Since the diurnal LST cycle can be expressed as a cosine function of time t (hours), a
similar cosine function can also be applied to describe the diurnal NSSR cycle:

SnðtÞ ¼ S0 þ Sa cos½αðt � trÞ�; (2)

where Sn(t) is NSSR (W m−2) at time t (hours), S0 is the residual NSSR at sunrise, Sa is the
NSSR amplitude, α is the width of the half-period of the cosine term, and tr is the time
(hours) of maximum NSSR.

To simplify the expression and better investigate the relationship between the diurnal
LST and NSSR cycles, each variable can be modified to make it dimensionless. The
dimensionless diurnal cycles of LST and NSSR are:

x ¼ TðtÞ � s

r � s
¼ p1 cos½βðt � tmÞ� þ q1; (3)

y ¼ SnðtÞ � j

k � j
¼ p2 cos½αðt � trÞ� þ q2; (4)

where x is the dimensionless LST, y is the dimensionless NSSR, r and s are set as 325 K
and 275 K, respectively, and k and j are set as 1200 W m−2 and 0, respectively, such that
p1, q1, p2, and q2 are parameters of diurnal LST and NSSR cycles.

For a day of clear skies, it is assumed that β in Equation (1) is equal to α in Equation (2).
If the difference between maximum LST time tm and maximum NSSR time tr is defined as
Δt(Δt = tm – tr), the following formula can then be derived:

990 P. Leng et al.
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p22 x� q1ð Þ2�2p1p2 cos β � Δtð Þ½ � x� q1ð Þ y� q2ð Þ
þ p21 y� q2ð Þ2¼ p1p2 sin β � Δtð Þ½ �2:

(5)

For a given atmospheric condition, p1, q1, p2, q2, β, and Δt are constants for a particular
soil type and soil moisture content. Therefore, Equation (5) could be considered as an
expression of an arbitrary ellipse. The ellipse parameters, including the centre horizontal
coordinate (x0), the centre vertical coordinate (y0), the semi-major axis (a), the semi-minor
axis (b), and the rotation angle (θ) can be calculated as:

x0 ¼ q1
y0 ¼ q2

θ ¼ 1
2 cot

�1

�
p21 � p22

2p1p2 cosðβ � ΔtÞ
�

a ¼ p1 sinðβ � ΔtÞ
b ¼ p2 sinðβ � ΔtÞ:

8>>>>>><
>>>>>>:

(6)

Clearly, the elliptical relationship would vary with different soil types and soil moisture
contents for bare surface under a given atmospheric condition. There is thus an elliptical
relationship between the diurnal LST and NSSR cycles.

2.2. Experiment design and data simulation

A database containing diurnal LST and NSSR cycles, as well as SSM under different
underlying surfaces and atmospheric conditions, is needed for the methodological devel-
opment of the SSM retrieval model. Although diurnal LST and NSSR cycles could be
acquired from geostationary satellite data, such as the Meteosat Second Generation
(MSG) with a spatial resolution of 3 km, it may not be possible to obtain the correspond-
ing SSM at such scale with acceptable accuracy from either satellites or field measure-
ments. Alternatively, the land-surface model, which is capable of describing the diurnal
LST and NSSR cycles and the evolution of SSM with different underlying surfaces and
atmospheric conditions, is used to produce all these data and construct the database for the
methodology development.

The Common Land Model (CoLM) was selected to simulate the diurnal LST and
NSSR cycles for different soil types and different ranges of SSM for bare surfaces. CoLM
is an improved version of the Community Land Model (CLM2.0, CLM3.0 versions), and
is radically different from the initial version and from CLM2.0 and CLM3.0. To date, the
model performance has been validated in sites with extensive field data, including some
sites adopted by the Project for Intercomparison of Land-surface Parameterization
Schemes (Cabauw, Valdai, Red-Arkansas river basin) and others (First ISLSCP Field
Experiment (FIFE), Boreal Ecosystem-Atmosphere Study (BOREAS), Hydrological
Atmospheric Pilot Experiment – Modelisation du BiLan Hydrique (HAPEX-
MOBILHY), Anglo-Brazilian Amazonian Climate Observation Study (ABRACOS),
Sonoran Desert, Global Soil Wetness Project (GSWP), Land Data Assimilation Systems
(LDAS)) (Dai and Ji 2008).

Figure 1 depicts the scheme of the methodology development of the SSM retrieval
model. As in the flowchart, simulation is the most significant part, which directly
produces data to construct the database. For the initialization of the CoLM, land-cover
type was set as Barren or Sparely Vegetated according to the United States Geological
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Survey (USGS) vegetation categories, and fractional vegetation cover was set as 0. In
total, eight typical soil types and each range of soil moisture (Table 1) were also
conducted in the CoLM simulation. Besides, atmospheric forcing data (Table 2) of eight
cloud-free days from early April to late October in the year 2001 at the Bondville site
(40.0062° N, 88.2904° W), including downward solar radiation, downward longwave
radiation, precipitation, air temperature, wind speed, wind direction, atmospheric pressure
at the surface, and specific humidity, were used to drive the CoLM. Finally, the LP-
sampling method (Saltelli et al. 2004), integrated in GEM-SA (Gaussian Emulation
Machine for Sensitivity Analysis) was used to represent eight typical soil types, eight
typical atmospheric conditions, and a range of SSM values for each soil type. As LST
responds to SSM at depths of 4–5 cm (Idso et al. 1975), the first soil layer of the CoLM

Figure 1. Scheme for methodology development of the daily average SSM retrieval model.
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was set to 5 cm. With the simulation, the selected outputs of the simulation mainly include
diurnal LST and NSSR cycles, as well as daily average SSM.

3. Results and discussion

3.1. Fitting ellipses with simulated data

The elliptical relationship between the diurnal LST and NSSR cycles has been discussed
above. To assess the validity of this relationship, the simulated data were fitted to the
elliptical relationship using the direct least squares fitting method (Fitzgibbon, Pilu, and
Fisher 1999). An example of the ellipse that fits the relationship between the diurnal LST
and NSSR cycles is shown in Figure 2. Figure 3 depicts the ellipses that were fitted with
different SSM values for the same soil type, while Figure 4 describes different soil types
with the same SSM. It is clear from Figures 3 and 4 that the ellipse varies with different
soil types and SSM values. Thus, the ellipse parameters are most likely capable of
determining the SSM for various soil types under a given set of atmospheric conditions.

3.2. Daily average SSM retrieval model

As stated above, an elliptical relationship exists between the diurnal LST and NSSR
cycles, and the elliptical relationship varies with different soil types and SSM under a
given atmospheric condition. To develop the SSM retrieval model using the ellipse

Table 1. Soil types and ranges of SSM used in the CoLM simulations.

No. Sand (%) Clay (%) Soil types Range of SSM (m3 m−3)

1 25 50 Clay 0.05–0.421
2 10 45 Silty clay 0.05–0.409
3 10 35 Silty clay loam 0.05–0.382
4 30 35 Clay loam 0.05–0.358
5 15 20 Silty loam 0.05–0.332
6 40 20 Loam 0.05–0.280
7 50 40 Sandy clay 0.05–0.361
8 50 30 Sandy clay loam 0.05–0.309

Table 2. Primary characteristics of atmospheric conditions for the eight cloud-free days used in the
CoLM simulation used to develop the daily average SSM retrieval model.

Year DOY
Maximum solar
radiation (W m−2)

Average wind
speed (m s−1)

Average air
temperature (K)

2001 103 864 4.05 287.68
128 906 3.05 297.25
167 918 3.02 303.85
192 1035 3.46 298.95
216 968 3.20 302.25
248 885 2.92 302.65
274 774 2.59 298.75
298 694 15.50 281.39

International Journal of Remote Sensing 993
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parameters and to eliminate the effect of soil types, correlation analysis was first con-
ducted to analyse the relationships between the elliptical parameters. Taking the simulated
data for day of year (DOY) 274 as an example, the results of correlation analysis are
shown in Table 3. As shown in Table 3, the absolute value of the correlation between the
four ellipse parameters, x0, y0, a, and b ranges from 0.898 to 0.987, which indicates quite
significant correlations among them, while for the parameter θ, non-significant correla-
tions were shown with other ellipse parameters. As most of the ellipse parameters are
highly correlated to each other, and it is difficult to determine which ellipse parameters are

0.4

0.3 Clay soil, SSM = 0.215 m
3 

m
–3

fitting ellipse

0.2

0.1

–0.1

–0.2

–0.3

–0.4

–0.5

–0.6
–0.4 –0.3 –0.2 –0.1 0.0

LST(–)

0.1 0.2 0.3 0.4 0.5

0.0
N

SS
R

(–
)

Figure 2. Ellipse fitted to the relationship between diurnal LST and NSSR cycles using simulated
data for clay soil with SSM = 0.215 m3 m−3 on DOY 302, 2006.

0.40
SSM = 0.131 m3 m–3

SSM = 0.215 m3 m–3

SSM = 0.300 m3 m–3

fitting ellipse of SSM = 0.131 m3 m–3

fitting ellipse of SSM = 0.215 m3 m–3

fitting ellipse of SSM = 0.300 m3 m–3

0.40 0.45

0.35

0.35

0.30

0.30

0.25

0.25

LST(–)

0.20

0.20

N
SS

R
(–

)

0.15

0.15

0.10

0.10

0.05

0.05
0.00

0.00

Figure 3. Ellipses fitted to the relationship between diurnal LST and NSSR cycles using simulated
data for clay soil with SSM = 0.131 m3 m−3, 0.215 m3 m−3, and 0.300 m3 m−3, respectively, on
DOY 302, 2006.
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suitable to retrieve SSM, a stepwise multi-linear regression (using SSM as the dependent
variable) was further performed and the five ellipse parameters (x0, y0, a, b, θ) were
analysed as possible independent variables. It should be noted that all soil types with all
their SSM simulations were used in the regression. The stepwise multi-linear regression
for DOY 274 is shown as an example in Table 4.

As shown in Table 4, the three ellipse parameters (θ, y0, a) in step 3 achieved a
relatively high degree of accuracy, with RMSE = 0.024 m3 m−3 and R2 = 0.912. Further,
using the four ellipse parameters (θ, y0, a, x0) in step 4 decreased the RMSE significantly,
from 0.024 m3 m−3 to approximately 0.010 m3 m−3. With additional parameters, the

0.40
Silty Clay soil
fitting ellipse of Silty Clay soil

fitting ellipse of Sandy Clay Loam soil
Sandy Clay Loam soil0.35

0.30

0.25

0.20

N
SS

R
(–

)

0.15

0.10

0.05

0.00
0.40 0.45 0.500.350.300.25

LST(–)

0.200.150.100.050.00

Figure 4. Ellipses fitted to the relationship between diurnal LST and NSSR cycles using simulated
data for silty clay soil and sandy clay loam soil with SSM = 0.219 m3 m−3 on DOY 302, 2006.

Table 3. Correlation coefficients between the ellipse parameters (DOY 274).

x0 y0 a b θ

x0 1.000
y0 0.987 1.000
a –0.957 –0.984 1.000
b –0.927 –0.944 0.898 1.000
θ –0.170 –0.064 –0.099 0.246 1.000

Table 4. Summary of stepwise regression process using SSM and five ellipse parameters for DOY
274.

Step Parameters RMSE (m3 m−3) R2

1 θ 0.045 0.694
2 θ, y0 0.033 0.837
3 θ, y0, a 0.024 0.912
4 θ, y0, a, x0 0.010 0.987
5 θ, y0, a, x0, b 0.009 0.990
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RMSE would not have exhibited any further significant decrease. Thus a multi-linear
relationship to retrieve daily average SSM in terms of the four ellipse parameters (x0, y0,
a, θ) could be written as:

SSM ¼ n1 � x0 þ n2 � y0 þ n3 � aþ n4 � θ þ n0; (7)

where SSM is the daily average SSM (m3 m−3) and x0, y0, a, and θ are the ellipse
parameters, representing the ellipse centre horizontal coordinate, ellipse centre vertical
coordinate, semi-major axis, and rotation angle, respectively. ni (i = 0, 1, 2, 3, 4) are the
fitting coefficients (m3 m−3).

A comparison of the estimated daily average SSM using Equation (7) and the
simulated daily average SSM are shown in Figure 5. The result of the stepwise multi-
linear regression contains different soil types, which means that the daily average SSM
retrieval model and the model parameters ni (i = 0, 1, 2, 3, 4) in Equation (7) are
independent of soil type and are related only to the atmospheric conditions of each day.

As Figure 5 is based on the data simulated for DOY 274, to determine the general
applicability of the proposed SSM retrieval model, the stepwise multi-linear regression
was finally conducted on the simulated SSM data for the other seven cloud-free days, with
the four ellipse parameters (x0, y0, a, θ) as independent variables. The results of model
parameters ni (i = 0, 1 , 2, 3, 4) of the total eight cloud-free days are presented in Table 5,
and the scatter plots of the estimated daily average SSM from Equation (7) and the
simulated daily average SSM for the eight cloud-free days are presented in Figure 6.
According to Table 5 and Figure 6, the coefficient of determination, R2, ranges from 0.852
to 0.999, while the RMSE ranges from 0.003 to 0.031 m3 m−3. The R2 and RMSE for all
situations are 0.953 and 0.017 m3 m−3, respectively, which indicates that the daily average
SSM retrieval model is stable, and it is feasible to estimate daily average SSM using
Equation (7) with the varying model parameters ni (i = 0, 1, 2, 3, 4) that depend only on
the atmospheric conditions for each individual cloud-free day.
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Figure 5. Comparison of daily average SSM estimated using Equation (7) with simulated average
SSM for DOY 274, 2001.
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3.3. Comparison with Zhao and Li’s (2013) model

Zhao and Li (2013) reported a multi-linear model to estimate SSM generally using two
parameters TN and tm, which were obtained based on the mid-morning segment of diurnal
LST and NSSR cycles. Since both Zhao and Li’s (2013) model and the proposed SSM
retrieval model are based on the evolution of LST and NSSR, a comparison between these
two models was conducted to evaluate the availability of the proposed model using
simulated data. First, the simulated time series of LST were used to fit the diurnal LST
cycle according to Equation (1) on the eight cloud-free days to acquire the parameter tm
for each simulation. Then, both the time series LST and NSSR during the mid-morning
were used to calculate the parameter TN for each simulation. Finally, a multi-linear
regression model for daily average SSM retrieval was obtained by taking the daily
average SSM as the dependent variable, and TN and tm as the independent variables.
Similarly to the model proposed in this paper, the model parameters of Zhao and Li’s

Table 5. Model parameters in Equation (7) for the eight cloud-free days.

DOY n1 n2 n3 n4 n0 R2 RMSE (m3 m−3)

103 3.455 3.811 4.894 0.941 –4.540 0.928 0.022
128 1.467 5.351 5.146 0.674 –4.273 0.933 0.021
167 0.024 5.331 4.180 0.192 –2.889 0.991 0.008
192 –0.224 4.214 3.457 0.357 –2.637 0.999 0.003
216 –0.619 5.287 3.862 1.100 –3.440 0.852 0.031
248 1.107 1.290 1.618 0.936 –2.782 0.948 0.018
274 3.308 3.052 4.077 1.516 –4.315 0.987 0.010
298 –0.923 7.842 5.309 0.566 –2.996 0.986 0.010
Total 0.953 0.017
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Figure 6. Comparison of daily average SSM estimated using Equation (7) with simulated average
SSM for each of eight cloud-free days.
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(2013) model also vary with different atmospheric conditions for each cloud-free day.
Comparison of R2 and RMSE of the two models is presented in Figure 7. As seen from
this figure, both models can provide SSM with relatively high accuracy, but the model
proposed in this paper is slightly more accurate overall.

3.4. Validation with measured data

To further assess the ability of Equation (7) to estimate SSM for bare soil, a preliminary
validation was performed using the data measured at the two AmeriFlux sites, Bondville
(40.0062° N, 88.2904° W) and Bondville Companion (40.0061° N, 88.2918° W). Since
we are unable to acquire the model parameters ni (i = 0, 1, 2, 3, 4) with the measured data
available at these two sites, the land-surface model is used to obtain the model parameters
ni (i = 0, 1, 2, 3, 4) by simulation, as shown in Figure 1. With the simulation by CoLM,
model parameters ni (i = 0, 1, 2, 3, 4) of 14 typical cloud-free days in the year 2007
(DOY110, 127, 134, 141, 160, 213, 225, 243, 255, 256, 282, 302, 305, and 308) at the
Bondville site, together with the ten typical cloud-free days in the years 2006 (DOY 297,
301, 302, and 313) and 2007 (DOY 302, 303, 305, 306, 308, and 313) at the Bondville
Companion site, were obtained. Furthermore, ellipse parameters (x0, y0, a, b, and θ) for
each of these cloud-free days were calculated by Equation (5) based on the measured
diurnal LST and NSSR cycles. Finally, daily average SSM values were estimated with the
simulated model parameters ni (i = 0, 1, 2, 3, 4) and the fitted ellipse parameters (x0, y0, a,
and θ) according to Equation (7). Figures 8 and 9 depict the measured and estimated daily
average SSM for each site. Coefficients of determination R2 = 0.548 with
RMSE = 0.088 m3 m−3 and R2 = 0.445 with RMSE = 0.126 m3 m−3 were achieved for
the Bondville Companion site and the Bondville site, respectively. As seen from these
figures, the trend observed in the estimated values is similar to that in the measured
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Figure 7. Comparison of R2 and RMSE of the proposed SSM retrieval model and Zhao and Li’s
(2013) model for eight cloud-free days.
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average daily SSM, though the estimates are higher than the actual values. This over-
estimation mainly occurs because the data simulation could not provide every aspect of
the actual conditions. However, the relatively high coefficient of determination
(R2 = 0.548 or 0.445) indicates a better consistency between the estimated daily average
SSM and the actual SSM values.
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Figure 8. Scatter plots of the actual daily average SSM and the estimated average daily SSM of the
ten cloud-free days at the Bondville Companion site.
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Figure 9. Scatter plots of the actual daily average SSM and the estimated average daily SSM of the
14 cloud-free days at the Bondville site.
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Finally, Bias = 0.072 m3 m−3 was obtained and used to calibrate the estimated daily
average SSM at Bondville Companion site, while Bias = 0.104 m3 m−3 was recorded for
the Bondville site. With this calibration processing, scatter plots of the measured daily
average SSM and estimated values are shown in Figure 10. After calibration, RMSE of
the estimated average daily SSM and the measured SSM significantly reduces from
0.088 m3 m−3 to 0.051 m3 m−3 for the Bondville Companion site, and from
0.126 m3 m−3 to 0.071 m3 m−3 for the Bondville site.

Validation results suggest that the proposed SSM retrieval model is capable of
estimating daily average SSM with RMSE of approximately 0.051 m3 m−3 at the
Bondville Companion site, and 0.071 m3 m−3 at the Bondville site. However, the
estimated results are an over-estimation, and Bias is needed to calibrate the daily average
SSM retrieval model. Theoretically, at least five field measurements with various soil
types and SSM under a given atmospheric condition are needed to obtain the five model
parameters ni (i = 0, 1, 2, 3, 4) in Equation (7). Alternatively, the model parameters can
also be achieved by a land-surface model simulation in the case of insufficient field
measurements. However, data simulation can never fully describe the whole reality, and
errors might also exist in the observed diurnal LST and NSSR cycles as well as the SSM
values, which will lead to Bias between the estimated daily average SSM and actual
values. Besides, SSM were measured in the top layer (0–10 cm) at the Bondville
Companion site, while the estimated daily average SSM are related to a layer depth of
5 cm, and therefore the SSM values used in the validation also have a marginal influence
on the accuracy of the proposed model.

3.5. Further development

Based on the simulated data, the proposed daily average SSM retrieval model proved to
be capable of estimating SSM for bare surfaces, and a preliminary validation with field
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Figure 10. Scatter plots of the actual SSM and the estimated SSM of the cloud-free days for the
two AmeriFlux sites; a simple calibration was conducted to adjust the Bias.
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measurements further verified its feasibilities. Because it is hard to find a satellite pixel
without the presence of vegetation in natural surfaces (about 10 km2), except for desert
regions, remotely sensed data were not involved in the present study. In addition, as stated
above, the five model parameters ni (i = 0, 1, 2, 3, 4) in Equation (7) vary for different
atmospheric conditions, and thus how to acquire these model parameters at the regional
scale is another essential point that should be addressed before applying the proposed
SSM model to remotely sensed data. Generally, these two points are the pivotal issues that
concern the application of the model with remotely sensed observations, and they are also
promising and being pursued as part of our future work. Besides, investigating the
relationship between model parameters and atmospheric conditions is probably a promis-
ing avenue to making the SSM retrieval model more universal.

4. Conclusion

SSM is a key land surface variable in many applications and environmental studies. With
the simulated data, a multi-linear model fully utilizing daytime LST and NSSR was
developed to estimate daily average SSM. To develop the model, CoLM was selected
to produce the data including diurnal LST and NSSR cycles as well as synergistic SSM
variation. Based on the simulated data, a simple stepwise linear regression was performed
to acquire the four ellipse parameters derived from the elliptical relationship between
diurnal LST and NSSR cycles, thereby to develop the daily average SSM retrieval model.
A good agreement was achieved using the average daily SSM retrieval model, with
RMSE ranging from 0.003 to 0.031 m3 m−3 and the coefficient of determination (R2)
ranging from 0.852 to 0.999 for the eight cloud-free days. Results showed that the
coefficients of the model were independent of soil type and varied each day. To evaluate
the proposed model, simulated data were used to compare our results to the SSM retrieval
model developed by Zhao and Li (2013). Results indicated that the proposed model was
more accurate. In addition to the simulated data, field measurements at the Bondville
Companion site and Bondville site were also used to evaluate the model. Coefficients of
determination R2 = 0.548 and R2 = 0.445 were achieved between the measured daily
average SSM and the estimated values for these two sites, respectively, which indicated a
better consistency between the estimated daily average SSM and the actual values. With a
simple calibration to adjust the Bias, RMSE reduced from 0.088 m3 m−3 to 0.051 m3 m−3 at
the Bondville Companion site, and from 0.126 m3 m−3 to 0.071 m3 m−3 at Bondville site.

According to this study, the proposed SSM retrieval model is capable of estimating daily
average SSM, and the model parameters ni (i = 0, 1, 2, 3, 4) are independent of soil type.
However, the model parameters are strongly dependent on atmospheric conditions. As the
development of the proposed SSM retrieval model for bare surfaces is based on simulated
data, generally two points need to be considered before applying the model to geostationary
satellite data in the future. The first is to take into account the vegetation in the SSM retrieval
model, the second is how to obtain the five model parameters ni (i = 0, 1, 2, 3, 4) at a
regional scale. Besides, we will also focus on the relationship between the model parameter
ni (i = 0, 1, 2, 3, 4) and atmospheric conditions to make the model more universal.
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